Merge pull request #43 from yardstick/feature/QUANT-3205
QUANT-3205: IRT Enemies support
This commit is contained in:
commit
4001200e9b
@ -37,6 +37,5 @@ def get_object_tags(key: str, bucket: str) -> list:
|
||||
tags = s3.get_object_tagging(Bucket=bucket, Key=key)['TagSet']
|
||||
return tags
|
||||
|
||||
|
||||
def file_stream_upload(buffer: io.BytesIO, name: str, bucket: str, action: str = None):
|
||||
return s3.upload_fileobj(buffer, bucket, name, ExtraArgs={'Tagging': f'action={action}'})
|
||||
|
@ -1,14 +1,18 @@
|
||||
from typing import List
|
||||
|
||||
from lib.irt.test_response_function import TestResponseFunction
|
||||
from lib.irt.test_information_function import TestInformationFunction
|
||||
|
||||
from models.target import Target
|
||||
from models.targets.tif_target import TifTarget
|
||||
from models.targets.tcc_target import TccTarget
|
||||
from models.item import Item
|
||||
|
||||
def generate_tif_results(items, solver_run):
|
||||
targets = []
|
||||
|
||||
for target in solver_run.objective_function.tif_targets:
|
||||
tif = TestInformationFunction(solver_run.irt_model).calculate(items, theta=target.theta)
|
||||
targets.append(Target(theta=target.theta, value=target.value, result=tif))
|
||||
targets.append(TifTarget(theta=target.theta, value=target.value, result=tif))
|
||||
|
||||
return targets
|
||||
|
||||
@ -17,6 +21,6 @@ def generate_tcc_results(items, solver_run):
|
||||
|
||||
for target in solver_run.objective_function.tcc_targets:
|
||||
tcc = TestResponseFunction(solver_run.irt_model).calculate(items, theta=target.theta)
|
||||
targets.append(Target(theta=target.theta, value=target.value, result=tcc))
|
||||
targets.append(TccTarget(theta=target.theta, value=target.value, result=tcc))
|
||||
|
||||
return targets
|
||||
|
21
app/helpers/problem_helper.py
Normal file
21
app/helpers/problem_helper.py
Normal file
@ -0,0 +1,21 @@
|
||||
from typing import Tuple
|
||||
|
||||
from models.item import Item
|
||||
|
||||
def sanctify(solved_items: [Item]) -> Tuple[list]:
|
||||
enemy_ids = []
|
||||
|
||||
# get all enemies
|
||||
for item in solved_items:
|
||||
# if the item is already an an enemy
|
||||
# then it's enemy is sacred
|
||||
if item.id not in enemy_ids:
|
||||
# if it has enemies, check if it exists as part of the solved items
|
||||
for enemy_id in item.enemies:
|
||||
# if it does, it's a true enemy
|
||||
if enemy_id in (i.id for i in solved_items):
|
||||
enemy_ids.append(enemy_id)
|
||||
|
||||
sacred_ids = [i.id for i in solved_items if i.id not in enemy_ids]
|
||||
|
||||
return sacred_ids, enemy_ids
|
@ -1,86 +0,0 @@
|
||||
from pulp import lpSum, LpProblem
|
||||
from random import randint, sample
|
||||
|
||||
import logging
|
||||
|
||||
from helpers.common_helper import *
|
||||
|
||||
from models.bundle import Bundle
|
||||
from models.solver_run import SolverRun
|
||||
from models.item import Item
|
||||
|
||||
from lib.errors.item_generation_error import ItemGenerationError
|
||||
|
||||
def build_constraints(solver_run: SolverRun, problem: LpProblem,
|
||||
items: list[Item], bundles: list[Bundle], selected_items: list[Item], selected_bundles: list[Bundle]) -> LpProblem:
|
||||
logging.info('Creating Constraints...')
|
||||
|
||||
try:
|
||||
total_form_items = solver_run.total_form_items
|
||||
constraints = solver_run.constraints
|
||||
|
||||
for constraint in constraints:
|
||||
attribute = constraint.reference_attribute
|
||||
min = constraint.minimum
|
||||
max = constraint.maximum
|
||||
|
||||
if attribute.type == 'metadata':
|
||||
logging.info('Metadata Constraint Generating...')
|
||||
|
||||
problem += lpSum(
|
||||
[
|
||||
len(bundle.items_with_attribute(attribute)) * bundles[bundle.id] for bundle in selected_bundles
|
||||
] +
|
||||
[
|
||||
item.attribute_exists(attribute).real * items[item.id] for item in selected_items
|
||||
]
|
||||
) >= round(total_form_items * (min / 100)), f'{attribute.id} - {attribute.value} - min'
|
||||
|
||||
problem += lpSum(
|
||||
[
|
||||
len(bundle.items_with_attribute(attribute)) * bundles[bundle.id] for bundle in selected_bundles
|
||||
] +
|
||||
[
|
||||
item.attribute_exists(attribute).real * items[item.id] for item in selected_items
|
||||
]
|
||||
) <= round(total_form_items * (max / 100)), f'{attribute.id} - {attribute.value} - max'
|
||||
elif attribute.type == 'bundle':
|
||||
logging.info('Bundles Constraint Generating...')
|
||||
# TODO: account for many different bundle types, since the id condition in L33 could yield duplicates
|
||||
if selected_bundles != None:
|
||||
# make sure the total bundles used in generated form is limited between min-max set
|
||||
problem += lpSum([
|
||||
bundles[bundle.id] for bundle in selected_bundles
|
||||
]) == randint(int(constraint.minimum),
|
||||
int(constraint.maximum))
|
||||
|
||||
logging.info('Constraints Created...')
|
||||
return problem
|
||||
except ValueError as error:
|
||||
logging.error(error)
|
||||
raise ItemGenerationError(
|
||||
"Bundle min and/or max larger than bundle amount provided",
|
||||
error.args[0])
|
||||
|
||||
|
||||
def get_random_bundles(total_form_items: int,
|
||||
bundles: list[Bundle],
|
||||
min: int,
|
||||
max: int,
|
||||
found_bundles=False) -> list[Bundle]:
|
||||
selected_bundles = None
|
||||
total_bundle_items = 0
|
||||
total_bundles = randint(min, max)
|
||||
logging.info(f'Selecting Bundles (total of {total_bundles})...')
|
||||
|
||||
while found_bundles == False:
|
||||
selected_bundles = sample(bundles, total_bundles)
|
||||
total_bundle_items = sum(bundle.count for bundle in selected_bundles)
|
||||
|
||||
if total_bundle_items <= total_form_items:
|
||||
found_bundles = True
|
||||
|
||||
if found_bundles == True:
|
||||
return selected_bundles
|
||||
else:
|
||||
return get_random_bundles(total_form_items, total_bundles - 1, bundles)
|
@ -43,7 +43,7 @@ class ServiceListener(Consumer):
|
||||
logging.error(f'action of type {action} does not exist.')
|
||||
|
||||
def main():
|
||||
logging.info('Starting IRT Service: That Was Rasch (v1.5.0)...')
|
||||
logging.info('Starting IRT Service: The Enemies Within (v1.7.0)...')
|
||||
|
||||
# ToDo: Figure out a much better way of doing this.
|
||||
# LocalStack wants 'endpoint_url', while prod doesnt :(
|
||||
|
@ -9,4 +9,5 @@ class AdvancedOptions(BaseModel):
|
||||
brand_bound_tolerance: Optional[float] = None
|
||||
max_forms: Optional[int] = None
|
||||
precision: Optional[float] = None
|
||||
ensure_form_uniqueness: bool = True
|
||||
extra_param_range: Optional[List[Dict]] = None
|
||||
|
@ -1,8 +1,7 @@
|
||||
from pydantic import BaseModel
|
||||
from typing import Optional
|
||||
|
||||
from typing import Optional, Union
|
||||
|
||||
class Attribute(BaseModel):
|
||||
value: Optional[str]
|
||||
value: Optional[Union[str,int,list]]
|
||||
type: Optional[str]
|
||||
id: str
|
||||
|
@ -14,6 +14,16 @@ class Bundle(BaseModel):
|
||||
items: List[Item]
|
||||
type: str
|
||||
|
||||
def find_items(self, requested_items_ids: [int]) -> [Item]:
|
||||
found_items = []
|
||||
|
||||
for item in self.items:
|
||||
if item.id in requested_items_ids:
|
||||
found_items.append(item)
|
||||
|
||||
return found_items
|
||||
|
||||
|
||||
def tif(self, irt_model: IRTModel, theta: float) -> float:
|
||||
return TestInformationFunction(irt_model).calculate(self.items, theta=theta)
|
||||
|
||||
@ -49,3 +59,13 @@ class Bundle(BaseModel):
|
||||
|
||||
def ordered_items(self) -> List[Item]:
|
||||
return sorted(self.items, key=lambda item: item.position)
|
||||
|
||||
# are there enemys in the bundle?
|
||||
def enemy_pair_count(self, pair: List[Item]) -> int:
|
||||
pair_count = 0
|
||||
|
||||
for item in self.items:
|
||||
if pair in item.enemy_pairs():
|
||||
pair_count += 1
|
||||
|
||||
return pair_count
|
||||
|
@ -1,9 +0,0 @@
|
||||
from pydantic import BaseModel
|
||||
|
||||
from models.attribute import Attribute
|
||||
|
||||
|
||||
class Constraint(BaseModel):
|
||||
reference_attribute: Attribute
|
||||
minimum: float
|
||||
maximum: float
|
15
app/models/constraints/bundle_constraint.py
Normal file
15
app/models/constraints/bundle_constraint.py
Normal file
@ -0,0 +1,15 @@
|
||||
from random import randint
|
||||
|
||||
from models.constraints.generic_constraint import *
|
||||
|
||||
class BundleConstraint(GenericConstraint):
|
||||
def build(self, problem_handler: Problem, **kwargs) -> None:
|
||||
logging.info('Bundles Constraint Generating...')
|
||||
|
||||
# TODO: account for many different bundle types, since the id condition in L33 could yield duplicates
|
||||
if problem_handler.bundles != None and len(problem_handler.bundles) > 0:
|
||||
# make sure the total bundles used in generated form is limited between min-max set
|
||||
problem_handler.problem += lpSum([
|
||||
problem_handler.solver_bundles_var[bundle.id] for bundle in problem_handler.bundles
|
||||
]) == randint(int(self.minimum),
|
||||
int(self.maximum)), f'Allowing min - max bundles'
|
31
app/models/constraints/enemy_pair_constraint.py
Normal file
31
app/models/constraints/enemy_pair_constraint.py
Normal file
@ -0,0 +1,31 @@
|
||||
from __future__ import annotations
|
||||
from typing import List
|
||||
|
||||
from models.constraints.generic_constraint import *
|
||||
|
||||
class EnemyPairConstraint(GenericConstraint):
|
||||
@classmethod
|
||||
def create(cls: Type[_T], pair: List[int]) -> _T:
|
||||
return cls(
|
||||
minimum=0,
|
||||
maximum=0,
|
||||
reference_attribute=Attribute(
|
||||
value=pair,
|
||||
type='enemy_pair',
|
||||
id='enemy_pair'
|
||||
)
|
||||
)
|
||||
|
||||
def build(self, problem_handler: Problem, **_) -> None:
|
||||
logging.info('Enemy Pair Constraint Generating...')
|
||||
|
||||
pair = self.reference_attribute.value
|
||||
problem_handler.problem += lpSum(
|
||||
[
|
||||
bundle.enemy_pair_count(pair) * problem_handler.solver_bundles_var[bundle.id]
|
||||
for bundle in problem_handler.bundles
|
||||
] + [
|
||||
(pair in item.enemy_pairs()).real * problem_handler.solver_items_var[item.id]
|
||||
for item in problem_handler.items
|
||||
]
|
||||
) <= 1, f'Enemy Pair constraint for pair: {pair}'
|
34
app/models/constraints/form_uniqueness_constraint.py
Normal file
34
app/models/constraints/form_uniqueness_constraint.py
Normal file
@ -0,0 +1,34 @@
|
||||
from __future__ import annotations
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from models.constraints.generic_constraint import *
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from models.solver_run import SolverRun
|
||||
|
||||
class FormUniquenessConstraint(GenericConstraint):
|
||||
@classmethod
|
||||
def create(cls: Type[_T], total_items: int) -> _T:
|
||||
return cls(
|
||||
minimum=0,
|
||||
maximum=0,
|
||||
reference_attribute=Attribute(
|
||||
value=total_items,
|
||||
type='form_uniqueness',
|
||||
id='form_uniqueness'
|
||||
)
|
||||
)
|
||||
|
||||
def build(self, problem_handler: Problem, **kwargs) -> None:
|
||||
logging.info('Form Uniqueness Constraint Generating...')
|
||||
|
||||
# form uniqueness constraint
|
||||
problem_handler.problem += lpSum(
|
||||
[
|
||||
kwargs['solution'].items_exist_in_forms(bundle.items) * problem_handler.solver_bundles_var[bundle.id]
|
||||
for bundle in problem_handler.bundles
|
||||
] + [
|
||||
kwargs['solution'].items_exist_in_forms([item]) * problem_handler.solver_items_var[item.id]
|
||||
for item in problem_handler.items
|
||||
]
|
||||
) <= self.reference_attribute.value, f'Ensuring uniqueness for form'
|
17
app/models/constraints/generic_constraint.py
Normal file
17
app/models/constraints/generic_constraint.py
Normal file
@ -0,0 +1,17 @@
|
||||
import logging
|
||||
|
||||
from pulp import lpSum
|
||||
from pydantic import BaseModel
|
||||
from typing import TypeVar, Type
|
||||
|
||||
from helpers.common_helper import *
|
||||
|
||||
from models.attribute import Attribute
|
||||
from models.problem import Problem
|
||||
|
||||
_T = TypeVar("_T")
|
||||
|
||||
class GenericConstraint(BaseModel):
|
||||
reference_attribute: Attribute
|
||||
minimum: float
|
||||
maximum: float
|
29
app/models/constraints/metadata_constraint.py
Normal file
29
app/models/constraints/metadata_constraint.py
Normal file
@ -0,0 +1,29 @@
|
||||
from __future__ import annotations
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from models.constraints.generic_constraint import *
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from models.solver_run import SolverRun
|
||||
|
||||
class MetadataConstraint(GenericConstraint):
|
||||
def build(self, problem_handler: Problem, **kwargs) -> None:
|
||||
logging.info('Metadata Constraint Generating...')
|
||||
|
||||
problem_handler.problem += lpSum(
|
||||
[
|
||||
len(bundle.items_with_attribute(self.reference_attribute)) * problem_handler.solver_bundles_var[bundle.id] for bundle in problem_handler.bundles
|
||||
] +
|
||||
[
|
||||
item.attribute_exists(self.reference_attribute).real * problem_handler.solver_items_var[item.id] for item in problem_handler.items
|
||||
]
|
||||
) >= round(kwargs['solver_run'].total_form_items * (self.minimum / 100)), f'{self.reference_attribute.id} - {self.reference_attribute.value} - min'
|
||||
|
||||
problem_handler.problem += lpSum(
|
||||
[
|
||||
len(bundle.items_with_attribute(self.reference_attribute)) * problem_handler.solver_bundles_var[bundle.id] for bundle in problem_handler.bundles
|
||||
] +
|
||||
[
|
||||
item.attribute_exists(self.reference_attribute).real * problem_handler.solver_items_var[item.id] for item in problem_handler.items
|
||||
]
|
||||
) <= round(kwargs['solver_run'].total_form_items * (self.maximum / 100)), f'{self.reference_attribute.id} - {self.reference_attribute.value} - max'
|
33
app/models/constraints/total_form_items_constraint.py
Normal file
33
app/models/constraints/total_form_items_constraint.py
Normal file
@ -0,0 +1,33 @@
|
||||
from __future__ import annotations
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from models.constraints.generic_constraint import *
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from models.solver_run import SolverRun
|
||||
|
||||
class TotalFormItemsConstraint(GenericConstraint):
|
||||
@classmethod
|
||||
def create(cls: Type[_T], total_items: int) -> _T:
|
||||
return cls(
|
||||
minimum=0,
|
||||
maximum=0,
|
||||
reference_attribute=Attribute(
|
||||
value=total_items,
|
||||
type='form_uniqueness',
|
||||
id='form_uniqueness'
|
||||
)
|
||||
)
|
||||
|
||||
def build(self, problem_handler: Problem, **kwargs) -> None:
|
||||
logging.info('Total Form Items Constraint Generating...')
|
||||
|
||||
problem_handler.problem += lpSum(
|
||||
[
|
||||
bundle.count * problem_handler.solver_bundles_var[bundle.id]
|
||||
for bundle in problem_handler.bundles
|
||||
] + [
|
||||
1 * problem_handler.solver_items_var[item.id]
|
||||
for item in problem_handler.items
|
||||
]
|
||||
) == self.reference_attribute.value, f'Total bundle form items for form'
|
@ -1,21 +1,27 @@
|
||||
from __future__ import annotations
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from pydantic import BaseModel
|
||||
from typing import List, TypeVar, Type
|
||||
|
||||
from helpers import irt_helper
|
||||
|
||||
from models.solver_run import SolverRun
|
||||
from models.item import Item
|
||||
from models.target import Target
|
||||
from models.targets.tif_target import TifTarget
|
||||
from models.targets.tcc_target import TccTarget
|
||||
|
||||
from lib.irt.test_response_function import TestResponseFunction
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from models.solver_run import SolverRun
|
||||
|
||||
_T = TypeVar("_T")
|
||||
|
||||
class Form(BaseModel):
|
||||
items: List[Item]
|
||||
cut_score: float
|
||||
tif_results: List[Target]
|
||||
tcc_results: List[Target]
|
||||
tif_results: List[TifTarget]
|
||||
tcc_results: List[TccTarget]
|
||||
status: str = 'Not Optimized'
|
||||
solver_variables: List[str]
|
||||
|
||||
@ -29,3 +35,10 @@ class Form(BaseModel):
|
||||
tcc_results=irt_helper.generate_tcc_results(items, solver_run),
|
||||
status=status,
|
||||
solver_variables=solver_variables)
|
||||
|
||||
def has_item(self, item: Item) -> bool:
|
||||
for i in self.items:
|
||||
if item == i:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
@ -1,5 +1,6 @@
|
||||
from pydantic import BaseModel
|
||||
from typing import List, Optional
|
||||
import logging
|
||||
from pydantic import BaseModel, validator
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
from models.attribute import Attribute
|
||||
|
||||
@ -10,16 +11,24 @@ class Item(BaseModel):
|
||||
id: int
|
||||
position: Optional[int] = None
|
||||
passage_id: Optional[int] = None
|
||||
enemies: List[int] = []
|
||||
workflow_state: Optional[str] = None
|
||||
attributes: List[Attribute] = None
|
||||
b_param: float = 0.00
|
||||
response: Optional[int] = None
|
||||
|
||||
def iif(self, solver_run, theta):
|
||||
return ItemInformationFunction(solver_run.irt_model).calculate(b_param=self.b_param, theta=theta)
|
||||
@validator("enemies", pre=True)
|
||||
def set_enemies(cls, v) -> List[id]:
|
||||
if v == "":
|
||||
return []
|
||||
enemies = list(filter(None, [int(enemy) for enemy in v.split(",")]))
|
||||
return enemies
|
||||
|
||||
def irf(self, solver_run, theta):
|
||||
return ItemResponseFunction(solver_run.irt_model).calculate(b_param=self.b_param, theta=theta)
|
||||
def iif(self, irt_model, theta):
|
||||
return ItemInformationFunction(irt_model).calculate(b_param=self.b_param, theta=theta)
|
||||
|
||||
def irf(self, irt_model, theta):
|
||||
return ItemResponseFunction(irt_model).calculate(b_param=self.b_param, theta=theta)
|
||||
|
||||
def get_attribute(self, ref_attribute: Attribute) -> Attribute or None:
|
||||
for attribute in self.attributes:
|
||||
@ -42,7 +51,7 @@ class Item(BaseModel):
|
||||
total = 0
|
||||
|
||||
for target in solver_run.objective_function.tif_targets:
|
||||
total += self.iif(solver_run, target.theta)
|
||||
total += self.iif(solver_run.irt_model, target.theta)
|
||||
|
||||
return total
|
||||
|
||||
@ -50,6 +59,18 @@ class Item(BaseModel):
|
||||
total = 0
|
||||
|
||||
for target in solver_run.objective_function.tif_targets:
|
||||
total += self.irf(solver_run, target.theta)
|
||||
total += self.irf(solver_run.irt_model, target.theta)
|
||||
|
||||
return total
|
||||
|
||||
def enemy_pairs(self, sort: bool = True) -> List[List[int]]:
|
||||
pairs = []
|
||||
|
||||
for enemy_id in self.enemies:
|
||||
pair = [self.id, enemy_id]
|
||||
|
||||
if sort: pair.sort()
|
||||
|
||||
pairs.append(pair)
|
||||
|
||||
return pairs
|
||||
|
@ -1,24 +1,37 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from pydantic import BaseModel
|
||||
from typing import Dict, List, AnyStr
|
||||
from pulp import lpSum
|
||||
|
||||
from models.target import Target
|
||||
|
||||
from models.targets.tif_target import TifTarget
|
||||
from models.targets.tcc_target import TccTarget
|
||||
from models.problem import Problem
|
||||
|
||||
class ObjectiveFunction(BaseModel):
|
||||
# minimizing tif/tcc target value is only option currently
|
||||
# as we add more we can build this out to be more dynamic
|
||||
# likely with models representing each objective function type
|
||||
tif_targets: List[Target]
|
||||
tcc_targets: List[Target]
|
||||
tif_targets: List[TifTarget]
|
||||
tcc_targets: List[TccTarget]
|
||||
target_variance_percentage: int = 10
|
||||
objective: AnyStr = "minimize"
|
||||
weight: Dict = {'tif': 1, 'tcc': 1}
|
||||
|
||||
def for_problem(self, problem_handler: Problem) -> None:
|
||||
problem_handler.problem += lpSum([
|
||||
bundle.count * problem_handler.solver_bundles_var[bundle.id]
|
||||
for bundle in problem_handler.bundles
|
||||
] + [
|
||||
problem_handler.solver_items_var[item.id]
|
||||
for item in problem_handler.items
|
||||
])
|
||||
|
||||
def increment_targets_drift(self,
|
||||
limit: float or bool,
|
||||
all: bool = False,
|
||||
amount: float = 0.1,
|
||||
targets: list[Target] = []) -> bool:
|
||||
targets: list[TifTarget|TccTarget] = []) -> bool:
|
||||
if all:
|
||||
for target in self.tif_targets:
|
||||
target.drift = round(target.drift + amount, 2)
|
||||
@ -44,5 +57,5 @@ class ObjectiveFunction(BaseModel):
|
||||
|
||||
return minimum_drift
|
||||
|
||||
def all_targets(self) -> list[Target]:
|
||||
def all_targets(self) -> list[TifTarget|TccTarget]:
|
||||
return self.tif_targets + self.tcc_targets
|
||||
|
127
app/models/problem.py
Normal file
127
app/models/problem.py
Normal file
@ -0,0 +1,127 @@
|
||||
from __future__ import annotations
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from pydantic import BaseModel
|
||||
from typing import Any, List
|
||||
from pulp import LpProblem, LpVariable, LpStatus, lpSum
|
||||
|
||||
import logging
|
||||
|
||||
from helpers.problem_helper import *
|
||||
from helpers import service_helper
|
||||
|
||||
from models.solution import Solution
|
||||
from models.item import Item
|
||||
from models.bundle import Bundle
|
||||
|
||||
from lib.errors.item_generation_error import ItemGenerationError
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from models.solver_run import SolverRun
|
||||
|
||||
class Problem(BaseModel):
|
||||
items: List[Item]
|
||||
bundles: List[Bundle]
|
||||
problem: Any
|
||||
solver_items_var: Any = None
|
||||
solver_bundles_var: Any = None
|
||||
|
||||
def __init__(self, **data) -> None:
|
||||
super().__init__(**data)
|
||||
|
||||
# setup common Solver variables
|
||||
self.solver_items_var = LpVariable.dicts("Item",
|
||||
[item.id for item in self.items],
|
||||
lowBound=0,
|
||||
upBound=1,
|
||||
cat='Binary')
|
||||
self.solver_bundles_var = LpVariable.dicts("Bundle",
|
||||
[bundle.id for bundle in self.bundles],
|
||||
lowBound=0,
|
||||
upBound=1,
|
||||
cat='Binary')
|
||||
|
||||
def solve(self, solver_run: SolverRun, enemy_ids: List[int] = []) -> LpProblem:
|
||||
logging.info('solving problem...')
|
||||
self.problem.solve()
|
||||
|
||||
# NOTICE: Legacy enemies implementation
|
||||
# leaving this in, just in case the current impl fails to function
|
||||
# and we need an immediate solution
|
||||
# if we allow enemies, go through the normal solving process
|
||||
# if solver_run.allow_enemies:
|
||||
# logging.info('enemes allowed, so just solving')
|
||||
# self.problem.solve()
|
||||
# # otherwise begin the process of filtering enemies
|
||||
# else:
|
||||
# self.problem.solve()
|
||||
|
||||
# # however, if the solve was infeasible, kick it back
|
||||
# # to the normal process
|
||||
# if LpStatus[self.problem.status] == 'Infeasible':
|
||||
# return self.problem
|
||||
# # otherwise continue
|
||||
# else:
|
||||
# # get items from solution
|
||||
# solved_items, _ = service_helper.solution_items(self.problem.variables(), solver_run)
|
||||
|
||||
# # sacred items will remain the same (with new items added each run) between solve attempts
|
||||
# # but new enemies will be appended
|
||||
# sacred_ids, new_enemy_ids = sanctify(solved_items)
|
||||
|
||||
# # the current solve run found new enemies
|
||||
# if new_enemy_ids:
|
||||
# logging.info('enemies found, adding constraints...')
|
||||
|
||||
# # append the new enemies to the enemies_id list
|
||||
# enemy_ids = list(set(enemy_ids+new_enemy_ids))
|
||||
|
||||
# # remove old enemy/sacred constraints
|
||||
# if 'Exclude_enemy_items' in self.problem.constraints.keys(): self.problem.constraints.pop('Exclude_enemy_items')
|
||||
# if 'Include_sacred_items' in self.problem.constraints.keys(): self.problem.constraints.pop('Include_sacred_items')
|
||||
|
||||
# # add constraint to not allow enemy items
|
||||
# self.problem += lpSum([
|
||||
# len(bundle.find_items(enemy_ids)) * self.solver_bundles_var[bundle.id]
|
||||
# for bundle in self.bundles
|
||||
# ] + [
|
||||
# (item.id in enemy_ids) * self.solver_items_var[item.id]
|
||||
# for item in self.items
|
||||
# ]) == 0, 'Exclude enemy items'
|
||||
|
||||
# # add constraint to use sacred items
|
||||
# self.problem += lpSum([
|
||||
# len(bundle.find_items(sacred_ids)) * self.solver_bundles_var[bundle.id]
|
||||
# for bundle in self.bundles
|
||||
# ] + [
|
||||
# (item.id in sacred_ids) * self.solver_items_var[item.id]
|
||||
# for item in self.items
|
||||
# ]) == len(sacred_ids), 'Include sacred items'
|
||||
|
||||
# # recursively solve until no enemies exist or infeasible
|
||||
# logging.info('recursively solving...')
|
||||
# self.solve(solver_run)
|
||||
|
||||
return self.problem
|
||||
|
||||
def generate(self, solution: Solution, solver_run: SolverRun) -> None:
|
||||
try:
|
||||
# creating problem objective function
|
||||
solver_run.objective_function.for_problem(self)
|
||||
|
||||
logging.info('Creating Constraints...')
|
||||
# generic constraints
|
||||
for constraint in solver_run.constraints:
|
||||
constraint.build(self, solver_run=solver_run, solution=solution)
|
||||
|
||||
# irt target constraints
|
||||
for target in solver_run.objective_function.all_targets():
|
||||
target.constraints(self, solver_run)
|
||||
|
||||
logging.info('Constraints Created...')
|
||||
except ValueError as error:
|
||||
logging.error(error)
|
||||
raise ItemGenerationError(
|
||||
error.msg,
|
||||
error.args[0])
|
||||
|
@ -2,8 +2,18 @@ from pydantic import BaseModel
|
||||
from typing import List
|
||||
|
||||
from models.form import Form
|
||||
|
||||
from models.item import Item
|
||||
|
||||
class Solution(BaseModel):
|
||||
response_id: int
|
||||
forms: List[Form]
|
||||
|
||||
def items_exist_in_forms(self, items: [Item]) -> bool:
|
||||
items_found = 0
|
||||
|
||||
for item in items:
|
||||
for form in self.forms:
|
||||
if form.has_item(item):
|
||||
items_found += 1
|
||||
|
||||
return items_found
|
||||
|
@ -1,31 +1,60 @@
|
||||
from __future__ import annotations
|
||||
from typing import TYPE_CHECKING, List, Literal, Optional, Tuple, Union, TypeVar
|
||||
from pulp import lpSum
|
||||
from pydantic import BaseModel
|
||||
from typing import List, Literal, Optional
|
||||
|
||||
import itertools
|
||||
import logging
|
||||
import random
|
||||
|
||||
from models.item import Item
|
||||
from models.constraint import Constraint
|
||||
from models.constraints.generic_constraint import GenericConstraint
|
||||
from models.constraints.metadata_constraint import MetadataConstraint
|
||||
from models.constraints.bundle_constraint import BundleConstraint
|
||||
from models.constraints.form_uniqueness_constraint import FormUniquenessConstraint
|
||||
from models.constraints.total_form_items_constraint import TotalFormItemsConstraint
|
||||
from models.constraints.enemy_pair_constraint import EnemyPairConstraint
|
||||
from models.irt_model import IRTModel
|
||||
from models.bundle import Bundle
|
||||
from models.objective_function import ObjectiveFunction
|
||||
from models.advanced_options import AdvancedOptions
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from models.solution import Solution
|
||||
from models.problem import Problem
|
||||
|
||||
ConstraintType = TypeVar('ConstraintType', bound=GenericConstraint)
|
||||
|
||||
class SolverRun(BaseModel):
|
||||
items: List[Item] = []
|
||||
bundles: List[Bundle] = []
|
||||
bundle_first_ordering: bool = True
|
||||
constraints: List[Constraint]
|
||||
constraints: List[ConstraintType]
|
||||
irt_model: IRTModel
|
||||
objective_function: ObjectiveFunction
|
||||
total_form_items: int
|
||||
total_forms: int = 1
|
||||
theta_cut_score: float = 0.00
|
||||
drift_style: Literal['constant', 'variable'] = 'constant'
|
||||
allow_enemies: bool = False
|
||||
advanced_options: Optional[AdvancedOptions]
|
||||
engine: str
|
||||
|
||||
def __init__(self, **data) -> None:
|
||||
super().__init__(**data)
|
||||
|
||||
# this is all a compensator for dynamically creating objects
|
||||
# ideally we'd change the payload to determine what type it is
|
||||
constraints: [ConstraintType] = []
|
||||
|
||||
# repackage to create appropriate constraint types
|
||||
for constraint in self.constraints:
|
||||
if constraint.reference_attribute.type == 'metadata':
|
||||
constraints.append(MetadataConstraint(reference_attribute=constraint.reference_attribute, minimum=constraint.minimum, maximum=constraint.maximum))
|
||||
elif constraint.reference_attribute.type == 'bundle':
|
||||
constraints.append(BundleConstraint(reference_attribute=constraint.reference_attribute, minimum=constraint.minimum, maximum=constraint.maximum))
|
||||
|
||||
self.constraints = constraints
|
||||
|
||||
def get_item(self, item_id: int) -> Item or None:
|
||||
for item in self.items:
|
||||
if item.id == item_id:
|
||||
@ -36,7 +65,7 @@ class SolverRun(BaseModel):
|
||||
if bundle.id == bundle_id:
|
||||
return bundle
|
||||
|
||||
def get_constraint_by_type(self, type: str) -> Constraint or None:
|
||||
def get_constraint_by_type(self, type: str) -> ConstraintType or None:
|
||||
for constraint in self.constraints:
|
||||
if type == constraint.reference_attribute.type:
|
||||
return constraint
|
||||
@ -45,6 +74,18 @@ class SolverRun(BaseModel):
|
||||
self.items = [item for item in self.items if item not in items]
|
||||
return True
|
||||
|
||||
def generate_constraints(self) -> None:
|
||||
# total form items
|
||||
self.constraints.append(TotalFormItemsConstraint.create(self.total_form_items))
|
||||
|
||||
# ensure form uniqueness
|
||||
if self.advanced_options.ensure_form_uniqueness:
|
||||
self.constraints.append(FormUniquenessConstraint.create(self.total_form_items - 1))
|
||||
|
||||
# enemies constraints
|
||||
for pair in self.enemy_pairs():
|
||||
self.constraints.append(EnemyPairConstraint.create(pair))
|
||||
|
||||
def generate_bundles(self):
|
||||
logging.info('Generating Bundles...')
|
||||
# confirms bundle constraints exists
|
||||
@ -97,7 +138,7 @@ class SolverRun(BaseModel):
|
||||
|
||||
logging.info('Bundles Generated...')
|
||||
|
||||
def get_constraint(self, name: str) -> Constraint:
|
||||
def get_constraint(self, name: str) -> ConstraintType:
|
||||
return next((constraint for constraint in self.constraints
|
||||
if constraint.reference_attribute.id == name), None)
|
||||
|
||||
@ -114,17 +155,13 @@ class SolverRun(BaseModel):
|
||||
else:
|
||||
return self.items
|
||||
|
||||
def select_items_by_percent(self, percent: int) -> List[Item]:
|
||||
items = self.unbundled_items()
|
||||
total_items = len(items)
|
||||
selected_items_amount = round(total_items - (total_items *
|
||||
(percent / 100)))
|
||||
def enemy_pairs(self) -> List[List[int]]:
|
||||
pairs = []
|
||||
|
||||
return random.sample(items, selected_items_amount)
|
||||
for item in self.items:
|
||||
# add enemy pairs for item to pairs
|
||||
pairs += item.enemy_pairs()
|
||||
|
||||
def select_bundles_by_percent(self, percent: int) -> List[Bundle]:
|
||||
total_bundles = len(self.bundles)
|
||||
selected_bundles_amount = round(total_bundles - (total_bundles *
|
||||
(percent / 100)))
|
||||
|
||||
return random.sample(self.bundles, selected_bundles_amount)
|
||||
# remove duplicates
|
||||
pairs.sort()
|
||||
return list(k for k,_ in itertools.groupby(pairs))
|
||||
|
@ -1,6 +1,15 @@
|
||||
from __future__ import annotations
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from pydantic import BaseModel
|
||||
from typing import Optional
|
||||
|
||||
from pulp import lpSum
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from models.solver_run import SolverRun
|
||||
from models.problem import Problem
|
||||
|
||||
class Target(BaseModel):
|
||||
theta: float
|
||||
value: float
|
31
app/models/targets/tcc_target.py
Normal file
31
app/models/targets/tcc_target.py
Normal file
@ -0,0 +1,31 @@
|
||||
from __future__ import annotations
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from models.targets.target import *
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from models.problem import Problem
|
||||
|
||||
class TccTarget(Target):
|
||||
def constraints(self, problem_handler: Problem, solver_run: SolverRun):
|
||||
problem_handler.problem += lpSum([
|
||||
bundle.trf(solver_run.irt_model, self.theta)
|
||||
* problem_handler.solver_bundles_var[bundle.id]
|
||||
for bundle in problem_handler.bundles
|
||||
] + [
|
||||
item.irf(solver_run.irt_model, self.theta) *
|
||||
problem_handler.solver_items_var[item.id]
|
||||
for item in problem_handler.items
|
||||
]) >= self.minimum(
|
||||
), f'Min TCC theta({self.theta}) at target {self.value} with a drift % of {self.drift}'
|
||||
|
||||
problem_handler.problem += lpSum([
|
||||
bundle.trf(solver_run.irt_model, self.theta)
|
||||
* problem_handler.solver_bundles_var[bundle.id]
|
||||
for bundle in problem_handler.bundles
|
||||
] + [
|
||||
item.irf(solver_run.irt_model, self.theta) *
|
||||
problem_handler.solver_items_var[item.id]
|
||||
for item in problem_handler.items
|
||||
]) <= self.maximum(
|
||||
), f'Max TCC theta({self.theta}) at target {self.value} with a drift % of {self.drift}'
|
31
app/models/targets/tif_target.py
Normal file
31
app/models/targets/tif_target.py
Normal file
@ -0,0 +1,31 @@
|
||||
from __future__ import annotations
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from models.targets.target import *
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from models.problem import Problem
|
||||
|
||||
class TifTarget(Target):
|
||||
def constraints(self, problem_handler: Problem, solver_run: SolverRun):
|
||||
problem_handler.problem += lpSum([
|
||||
bundle.tif(solver_run.irt_model, self.theta)
|
||||
* problem_handler.solver_bundles_var[bundle.id]
|
||||
for bundle in problem_handler.bundles
|
||||
] + [
|
||||
item.iif(solver_run.irt_model, self.theta) *
|
||||
problem_handler.solver_items_var[item.id]
|
||||
for item in problem_handler.items
|
||||
]) >= self.minimum(
|
||||
), f'Min TIF theta({self.theta}) at target {self.value} with a drift % of {self.drift}'
|
||||
|
||||
problem_handler.problem += lpSum([
|
||||
bundle.tif(solver_run.irt_model, self.theta)
|
||||
* problem_handler.solver_bundles_var[bundle.id]
|
||||
for bundle in problem_handler.bundles
|
||||
] + [
|
||||
item.iif(solver_run.irt_model, self.theta) *
|
||||
problem_handler.solver_items_var[item.id]
|
||||
for item in problem_handler.items
|
||||
]) <= self.maximum(
|
||||
), f'Max TIF theta({self.theta}) at target {self.value} with a drift % of {self.drift}'
|
@ -1,15 +1,16 @@
|
||||
import json, random, io, logging
|
||||
|
||||
from pulp import LpProblem, LpVariable, LpMinimize, LpStatus, lpSum
|
||||
from pulp import LpProblem, LpMinimize, LpStatus
|
||||
|
||||
from lib.application_configs import ApplicationConfigs
|
||||
from helpers import aws_helper, tar_helper, csv_helper, service_helper, solver_helper
|
||||
from helpers import aws_helper, tar_helper, csv_helper, service_helper
|
||||
from lib.errors.item_generation_error import ItemGenerationError
|
||||
|
||||
from models.solver_run import SolverRun
|
||||
from models.solution import Solution
|
||||
from models.problem import Problem
|
||||
from models.form import Form
|
||||
from models.target import Target
|
||||
from models.targets.target import Target
|
||||
|
||||
from services.base import Base
|
||||
|
||||
@ -20,6 +21,7 @@ class FormGenerationService(Base):
|
||||
try:
|
||||
self.solver_run = self.create_solver_run_from_attributes()
|
||||
self.solver_run.generate_bundles()
|
||||
self.solver_run.generate_constraints()
|
||||
self.solution = self.generate_solution()
|
||||
self.result = self.stream_to_s3_bucket()
|
||||
except ItemGenerationError as error:
|
||||
@ -71,24 +73,6 @@ class FormGenerationService(Base):
|
||||
form_number = form_count + 1
|
||||
current_drift = 0 # FF Tokyo Drift
|
||||
|
||||
# adding an element of randomness to the items and bundles used
|
||||
# may need to change impl based on limit of items available
|
||||
selected_items = self.solver_run.select_items_by_percent(30)
|
||||
selected_bundles = self.solver_run.select_bundles_by_percent(
|
||||
30)
|
||||
|
||||
# setup common Solver variables
|
||||
items = LpVariable.dicts("Item",
|
||||
[item.id for item in selected_items],
|
||||
lowBound=0,
|
||||
upBound=1,
|
||||
cat='Binary')
|
||||
bundles = LpVariable.dicts("Bundle",
|
||||
[bundle.id for bundle in selected_bundles],
|
||||
lowBound=0,
|
||||
upBound=1,
|
||||
cat='Binary')
|
||||
|
||||
logging.info(f'Generating Solution for Form {form_number} using the {self.solver_run.irt_model.model} IRT model')
|
||||
|
||||
while current_drift <= Target.max_drift():
|
||||
@ -97,99 +81,9 @@ class FormGenerationService(Base):
|
||||
drift_percent)
|
||||
|
||||
# create problem
|
||||
problem = LpProblem('ata-form-generate', LpMinimize)
|
||||
|
||||
# objective function
|
||||
problem += lpSum([
|
||||
bundle.count * bundles[bundle.id]
|
||||
for bundle in selected_bundles
|
||||
] + [
|
||||
items[item.id]
|
||||
for item in selected_items
|
||||
])
|
||||
|
||||
# Form Constraints
|
||||
problem += lpSum(
|
||||
[
|
||||
bundle.count * bundles[bundle.id]
|
||||
for bundle in selected_bundles
|
||||
] + [
|
||||
1 * items[item.id]
|
||||
for item in selected_items
|
||||
]
|
||||
) == self.solver_run.total_form_items, f'Total bundle form items for form {form_number}'
|
||||
|
||||
# Dynamic constraints.. currently we only support Metadata and Bundles(Cases/Passages)
|
||||
problem = solver_helper.build_constraints(
|
||||
self.solver_run, problem, items, bundles, selected_items, selected_bundles)
|
||||
|
||||
# form uniqueness constraints
|
||||
# for form in solution.forms:
|
||||
# form_item_options = [
|
||||
# bundles[bundle.id]
|
||||
# for bundle in selected_bundles
|
||||
# ] + [
|
||||
# items[item.id]
|
||||
# for item in selected_items
|
||||
# ]
|
||||
# problem += len(
|
||||
# set(form.solver_variables)
|
||||
# & set(form_item_options)) / float(
|
||||
# len(
|
||||
# set(form.solver_variables)
|
||||
# | set(form_item_options))) * 100 >= 10
|
||||
|
||||
logging.info('Creating TIF and TCC Elastic constraints')
|
||||
|
||||
# Behold our very own Elastic constraints!
|
||||
for tif_target in self.solver_run.objective_function.tif_targets:
|
||||
problem += lpSum([
|
||||
bundle.tif(self.solver_run.irt_model, tif_target.theta)
|
||||
* bundles[bundle.id]
|
||||
for bundle in selected_bundles
|
||||
] + [
|
||||
item.iif(self.solver_run, tif_target.theta) *
|
||||
items[item.id]
|
||||
for item in selected_items
|
||||
]) >= tif_target.minimum(
|
||||
), f'Min TIF theta({tif_target.theta}) at target {tif_target.value} drift at {current_drift}%'
|
||||
problem += lpSum([
|
||||
bundle.tif(self.solver_run.irt_model, tif_target.theta)
|
||||
* bundles[bundle.id]
|
||||
for bundle in selected_bundles
|
||||
] + [
|
||||
item.iif(self.solver_run, tif_target.theta) *
|
||||
items[item.id]
|
||||
for item in selected_items
|
||||
]) <= tif_target.maximum(
|
||||
), f'Max TIF theta({tif_target.theta}) at target {tif_target.value} drift at {current_drift}%'
|
||||
|
||||
for tcc_target in self.solver_run.objective_function.tcc_targets:
|
||||
problem += lpSum([
|
||||
bundle.trf(self.solver_run.irt_model, tcc_target.theta)
|
||||
* bundles[bundle.id]
|
||||
for bundle in selected_bundles
|
||||
] + [
|
||||
item.irf(self.solver_run, tcc_target.theta) *
|
||||
items[item.id]
|
||||
for item in selected_items
|
||||
]) >= tcc_target.minimum(
|
||||
), f'Min TCC theta({tcc_target.theta}) at target {tcc_target.value} drift at {current_drift}%'
|
||||
problem += lpSum([
|
||||
bundle.trf(self.solver_run.irt_model, tcc_target.theta)
|
||||
* bundles[bundle.id]
|
||||
for bundle in selected_bundles
|
||||
] + [
|
||||
item.irf(self.solver_run, tcc_target.theta) *
|
||||
items[item.id]
|
||||
for item in selected_items
|
||||
]) <= tcc_target.maximum(
|
||||
), f'Max TCC theta({tcc_target.theta}) at target {tcc_target.value} drift at {current_drift}%'
|
||||
|
||||
logging.info(
|
||||
f'Solving for Form {form_number} with a drift of {current_drift}%'
|
||||
)
|
||||
problem.solve()
|
||||
problem_handler = Problem(items = self.solver_run.unbundled_items(), bundles = self.solver_run.bundles, problem = LpProblem('ata-form-generate', LpMinimize))
|
||||
problem_handler.generate(solution, self.solver_run)
|
||||
problem = problem_handler.solve(self.solver_run)
|
||||
|
||||
if LpStatus[problem.status] == 'Infeasible':
|
||||
logging.info(
|
||||
@ -203,6 +97,7 @@ class FormGenerationService(Base):
|
||||
logging.info(
|
||||
f'No feasible solution found for Form {form_number}!'
|
||||
)
|
||||
logging.error(problem)
|
||||
|
||||
self.add_form_to_solution(problem, solution)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user