Merge pull request #41 from yardstick/feature/QUANT-3199

QUANT-3199: Add Rasch functionality to form generation
This commit is contained in:
Adrian Manteza 2023-10-27 17:13:22 -04:00 committed by GitHub
commit 49178380a4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 18 additions and 6 deletions

View File

@ -1,6 +1,7 @@
import logging
from lib.irt.models.three_parameter_logistic import ThreeParameterLogistic
from lib.irt.models.rasch import Rasch
from lib.errors.item_generation_error import ItemGenerationError
@ -20,6 +21,10 @@ class ItemInformationFunction():
return (self.model_data.a_param * q *
(p - self.model_data.c_param)**2) / (p * (
(1 - self.model_data.c_param)**2))
elif self.model_data.model == 'rasch':
p = Rasch(self.model_data, kwargs).result()
q = 1 - p
return p * q
else:
# potentially error out
raise ItemGenerationError(

View File

@ -1,4 +1,5 @@
from lib.irt.models.three_parameter_logistic import ThreeParameterLogistic
from lib.irt.models.rasch import Rasch
from lib.errors.item_generation_error import ItemGenerationError
@ -10,5 +11,7 @@ class ItemResponseFunction():
def calculate(self, **kwargs):
if self.model_data.model == '3PL':
return ThreeParameterLogistic(self.model_data, kwargs).result()
elif self.model_data.model == 'rasch':
return Rasch(self.model_data, kwargs).result()
else:
raise ItemGenerationError("irt model not supported or provided")

View File

@ -5,7 +5,10 @@ from lib.irt.models.base import *
class Rasch(Base):
def result(self):
return 0.0
# contains the primary Rasch function, determining the probably of an inidividual
# that an individual at a certain theta would get a particular question correct
# https://edres.org/irt/baker/chapter6.pdf
return (1 / (1 + self.e(-1 * (self.theta - self.b_param))))
@classmethod
def ability_estimate(self, items) -> float:

View File

@ -1,11 +1,11 @@
from pydantic import BaseModel
from typing import Dict
from typing import Dict, Optional
class IRTModel(BaseModel):
a_param: float
a_param: Optional[float] = None
b_param: Dict = {"schema_bson_id": str, "field_bson_id": str}
c_param: float
c_param: Optional[float] = None
model: str
def formatted_b_param(self):

View File

@ -1,6 +1,6 @@
import json, random, io, logging
from pulp import LpProblem, LpVariable, LpMinimize, LpMaximize, LpAffineExpression, LpConstraint, LpStatus, lpSum
from pulp import LpProblem, LpVariable, LpMinimize, LpStatus, lpSum
from lib.application_configs import ApplicationConfigs
from helpers import aws_helper, tar_helper, csv_helper, service_helper, solver_helper
@ -72,6 +72,7 @@ class FormGenerationService(Base):
current_drift = 0 # FF Tokyo Drift
# adding an element of randomness to the items and bundles used
# may need to change impl based on limit of items available
selected_items = self.solver_run.select_items_by_percent(30)
selected_bundles = self.solver_run.select_bundles_by_percent(
30)
@ -88,7 +89,7 @@ class FormGenerationService(Base):
upBound=1,
cat='Binary')
logging.info(f'Generating Solution for Form {form_number}')
logging.info(f'Generating Solution for Form {form_number} using the {self.solver_run.irt_model.model} IRT model')
while current_drift <= Target.max_drift():
drift_percent = current_drift / 100