refactor in prep for enemies

This commit is contained in:
Joshua Burman 2023-11-09 16:12:26 -05:00
parent 49178380a4
commit 11979193de
7 changed files with 159 additions and 115 deletions

View File

@ -11,8 +11,9 @@ from models.item import Item
from lib.errors.item_generation_error import ItemGenerationError
# should probably be factored out into a bundle class method or a method in the solver run
def build_constraints(solver_run: SolverRun, problem: LpProblem,
items: list[Item], bundles: list[Bundle], selected_items: list[Item], selected_bundles: list[Bundle]) -> LpProblem:
items: list[Item], bundles: list[Bundle], selected_items: list[Item], selected_bundles: list[Bundle], current_drift: int) -> LpProblem:
logging.info('Creating Constraints...')
try:
@ -47,7 +48,7 @@ def build_constraints(solver_run: SolverRun, problem: LpProblem,
elif attribute.type == 'bundle':
logging.info('Bundles Constraint Generating...')
# TODO: account for many different bundle types, since the id condition in L33 could yield duplicates
if selected_bundles != None:
if selected_bundles != None and selected_bundles > 0:
# make sure the total bundles used in generated form is limited between min-max set
problem += lpSum([
bundles[bundle.id] for bundle in selected_bundles
@ -55,6 +56,52 @@ def build_constraints(solver_run: SolverRun, problem: LpProblem,
int(constraint.maximum))
logging.info('Constraints Created...')
# Behold our very own Elastic constraints!
for tif_target in solver_run.objective_function.tif_targets:
problem += lpSum([
bundle.tif(solver_run.irt_model, tif_target.theta)
* bundles[bundle.id]
for bundle in selected_bundles
] + [
item.iif(solver_run, tif_target.theta) *
items[item.id]
for item in selected_items
]) >= tif_target.minimum(
), f'Min TIF theta({tif_target.theta}) at target {tif_target.value} drift at {current_drift}%'
problem += lpSum([
bundle.tif(solver_run.irt_model, tif_target.theta)
* bundles[bundle.id]
for bundle in selected_bundles
] + [
item.iif(solver_run, tif_target.theta) *
items[item.id]
for item in selected_items
]) <= tif_target.maximum(
), f'Max TIF theta({tif_target.theta}) at target {tif_target.value} drift at {current_drift}%'
for tcc_target in solver_run.objective_function.tcc_targets:
problem += lpSum([
bundle.trf(solver_run.irt_model, tcc_target.theta)
* bundles[bundle.id]
for bundle in selected_bundles
] + [
item.irf(solver_run, tcc_target.theta) *
items[item.id]
for item in selected_items
]) >= tcc_target.minimum(
), f'Min TCC theta({tcc_target.theta}) at target {tcc_target.value} drift at {current_drift}%'
problem += lpSum([
bundle.trf(solver_run.irt_model, tcc_target.theta)
* bundles[bundle.id]
for bundle in selected_bundles
] + [
item.irf(solver_run, tcc_target.theta) *
items[item.id]
for item in selected_items
]) <= tcc_target.maximum(
), f'Max TCC theta({tcc_target.theta}) at target {tcc_target.value} drift at {current_drift}%'
return problem
except ValueError as error:
logging.error(error)
@ -62,7 +109,7 @@ def build_constraints(solver_run: SolverRun, problem: LpProblem,
"Bundle min and/or max larger than bundle amount provided",
error.args[0])
# should probably be factored out into a bundle class method or a method in the solver run
def get_random_bundles(total_form_items: int,
bundles: list[Bundle],
min: int,

View File

@ -43,7 +43,7 @@ class ServiceListener(Consumer):
logging.error(f'action of type {action} does not exist.')
def main():
logging.info('Starting IRT Service: That Was Rasch (v1.5.0)...')
logging.info('Starting IRT Service: The Enemies Within (v1.7.0)...')
# ToDo: Figure out a much better way of doing this.
# LocalStack wants 'endpoint_url', while prod doesnt :(

View File

@ -29,3 +29,10 @@ class Form(BaseModel):
tcc_results=irt_helper.generate_tcc_results(items, solver_run),
status=status,
solver_variables=solver_variables)
def has_item(self, item: Item) -> bool:
for i in self.items:
if item == i:
return True
return False

View File

@ -0,0 +1,3 @@
from models.problem import Problem
class IrtProblem(Problem):

79
app/models/problem.py Normal file
View File

@ -0,0 +1,79 @@
from pydantic import BaseModel
from typing import Any, List
from pulp import LpProblem, LpVariable, lpSum
import logging, math
from helpers import solver_helper
from models.solver_run import SolverRun
from models.solution import Solution
from models.item import Item
from models.bundle import Bundle
class Problem(BaseModel):
items: List[Item]
bundles: List[Bundle]
problem: Any
solver_items_var: Any = None
solver_bundles_var: Any = None
def __init__(self, **data) -> None:
super().__init__(**data)
# setup common Solver variables
self.solver_items_var = LpVariable.dicts("Item",
[item.id for item in self.items],
lowBound=0,
upBound=1,
cat='Binary')
self.solver_bundles_var = LpVariable.dicts("Bundle",
[bundle.id for bundle in self.bundles],
lowBound=0,
upBound=1,
cat='Binary')
# objective function
self.problem += lpSum([
bundle.count * self.solver_bundles_var[bundle.id]
for bundle in self.bundles
] + [
self.solver_items_var[item.id]
for item in self.items
])
def solve(self) -> LpProblem:
self.problem.solve()
return self.problem
def generate(self, solution: Solution, solver_run: SolverRun):
# Form Constraints
self.problem += lpSum(
[
bundle.count * self.solver_bundles_var[bundle.id]
for bundle in self.bundles
] + [
1 * self.solver_items_var[item.id]
for item in self.items
]
) == solver_run.total_form_items, f'Total bundle form items for form'
# each time a form is generated, we want to ensure
# that it is unique to all other forms generated before it
self.problem += lpSum(
[
solution.items_exist_in_forms(bundle.items) * self.solver_bundles_var[bundle.id]
for bundle in self.bundles
] + [
solution.items_exist_in_forms([item]) * self.solver_items_var[item.id]
for item in self.items
]
) <= solver_run.total_form_items - 1, f'Ensuring uniqueness for form'
def generate_constraints(self, solver_run: SolverRun, current_drift: int):
self.problem = solver_helper.build_constraints(
solver_run, self.problem, self.solver_items_var, self.solver_bundles_var, self.items, self.bundles, current_drift)

View File

@ -2,8 +2,21 @@ from pydantic import BaseModel
from typing import List
from models.form import Form
from models.item import Item
class Solution(BaseModel):
response_id: int
forms: List[Form]
def items_exist_in_forms(self, items: [Item]) -> bool:
items_found = 0
for item in items:
for form in self.forms:
if form.has_item(item):
items_found += 1
return items_found

View File

@ -8,6 +8,7 @@ from lib.errors.item_generation_error import ItemGenerationError
from models.solver_run import SolverRun
from models.solution import Solution
from models.problem import Problem
from models.form import Form
from models.target import Target
@ -71,24 +72,6 @@ class FormGenerationService(Base):
form_number = form_count + 1
current_drift = 0 # FF Tokyo Drift
# adding an element of randomness to the items and bundles used
# may need to change impl based on limit of items available
selected_items = self.solver_run.select_items_by_percent(30)
selected_bundles = self.solver_run.select_bundles_by_percent(
30)
# setup common Solver variables
items = LpVariable.dicts("Item",
[item.id for item in selected_items],
lowBound=0,
upBound=1,
cat='Binary')
bundles = LpVariable.dicts("Bundle",
[bundle.id for bundle in selected_bundles],
lowBound=0,
upBound=1,
cat='Binary')
logging.info(f'Generating Solution for Form {form_number} using the {self.solver_run.irt_model.model} IRT model')
while current_drift <= Target.max_drift():
@ -97,99 +80,11 @@ class FormGenerationService(Base):
drift_percent)
# create problem
problem = LpProblem('ata-form-generate', LpMinimize)
# objective function
problem += lpSum([
bundle.count * bundles[bundle.id]
for bundle in selected_bundles
] + [
items[item.id]
for item in selected_items
])
# Form Constraints
problem += lpSum(
[
bundle.count * bundles[bundle.id]
for bundle in selected_bundles
] + [
1 * items[item.id]
for item in selected_items
]
) == self.solver_run.total_form_items, f'Total bundle form items for form {form_number}'
# Dynamic constraints.. currently we only support Metadata and Bundles(Cases/Passages)
problem = solver_helper.build_constraints(
self.solver_run, problem, items, bundles, selected_items, selected_bundles)
# form uniqueness constraints
# for form in solution.forms:
# form_item_options = [
# bundles[bundle.id]
# for bundle in selected_bundles
# ] + [
# items[item.id]
# for item in selected_items
# ]
# problem += len(
# set(form.solver_variables)
# & set(form_item_options)) / float(
# len(
# set(form.solver_variables)
# | set(form_item_options))) * 100 >= 10
logging.info('Creating TIF and TCC Elastic constraints')
# Behold our very own Elastic constraints!
for tif_target in self.solver_run.objective_function.tif_targets:
problem += lpSum([
bundle.tif(self.solver_run.irt_model, tif_target.theta)
* bundles[bundle.id]
for bundle in selected_bundles
] + [
item.iif(self.solver_run, tif_target.theta) *
items[item.id]
for item in selected_items
]) >= tif_target.minimum(
), f'Min TIF theta({tif_target.theta}) at target {tif_target.value} drift at {current_drift}%'
problem += lpSum([
bundle.tif(self.solver_run.irt_model, tif_target.theta)
* bundles[bundle.id]
for bundle in selected_bundles
] + [
item.iif(self.solver_run, tif_target.theta) *
items[item.id]
for item in selected_items
]) <= tif_target.maximum(
), f'Max TIF theta({tif_target.theta}) at target {tif_target.value} drift at {current_drift}%'
for tcc_target in self.solver_run.objective_function.tcc_targets:
problem += lpSum([
bundle.trf(self.solver_run.irt_model, tcc_target.theta)
* bundles[bundle.id]
for bundle in selected_bundles
] + [
item.irf(self.solver_run, tcc_target.theta) *
items[item.id]
for item in selected_items
]) >= tcc_target.minimum(
), f'Min TCC theta({tcc_target.theta}) at target {tcc_target.value} drift at {current_drift}%'
problem += lpSum([
bundle.trf(self.solver_run.irt_model, tcc_target.theta)
* bundles[bundle.id]
for bundle in selected_bundles
] + [
item.irf(self.solver_run, tcc_target.theta) *
items[item.id]
for item in selected_items
]) <= tcc_target.maximum(
), f'Max TCC theta({tcc_target.theta}) at target {tcc_target.value} drift at {current_drift}%'
logging.info(
f'Solving for Form {form_number} with a drift of {current_drift}%'
)
problem.solve()
problem_handler = Problem(items = self.solver_run.items, bundles = self.solver_run.bundles, problem = LpProblem('ata-form-generate', LpMinimize))
problem_handler.generate(solution, self.solver_run)
problem_handler.generate_constraints(self.solver_run, current_drift)
problem = problem_handler.solve()
if LpStatus[problem.status] == 'Infeasible':
logging.info(