added constant drift incrementing for tcc, tif values
This commit is contained in:
parent
46d3538690
commit
f18e048081
@ -49,27 +49,6 @@ def build_constraints(solver_run: SolverRun, problem: LpProblem,
|
||||
bundles[bundle.id] for bundle in solver_run.bundles
|
||||
]) == randint(int(constraint.minimum),
|
||||
int(constraint.maximum))
|
||||
# total_bundle_items = 0
|
||||
# selected_bundles = get_random_bundles(solver_run.total_form_items, solver_run.bundles, int(constraint.minimum), int(constraint.maximum))
|
||||
|
||||
# for bundle in selected_bundles:
|
||||
# con = dict(zip([item.id for item in solver_run.items],
|
||||
# [(getattr(item, bundle.type, False) == bundle.id)
|
||||
# for item in solver_run.items]))
|
||||
# problem += lpSum([con[item.id]
|
||||
# * items[item.id]
|
||||
# for item in solver_run.items]) == bundle.count, f'Bundle constraint for {bundle.type} ({bundle.id})'
|
||||
# total_bundle_items += bundle.count
|
||||
|
||||
# # make sure all other items added to the form
|
||||
# # are not a part of any bundle
|
||||
# # currently only supports single bundle constraints, will need refactoring for multiple bundle constraints
|
||||
# con = dict(zip([item.id for item in solver_run.items],
|
||||
# [(getattr(item, attribute.id, None) == None)
|
||||
# for item in solver_run.items]))
|
||||
# problem += lpSum([con[item.id]
|
||||
# * items[item.id]
|
||||
# for item in solver_run.items]) == solver_run.total_form_items - total_bundle_items, f'Remaining items are not of a bundle type'
|
||||
|
||||
logging.info('Constraints Created...')
|
||||
return problem
|
||||
|
@ -24,7 +24,7 @@ class ServiceListener(SqsListener):
|
||||
|
||||
|
||||
def main():
|
||||
logging.info('Starting Solver Service (v1.1.2)...')
|
||||
logging.info('Starting Solver Service (v1.1.3)...')
|
||||
listener = ServiceListener(
|
||||
os.environ['SQS_QUEUE'],
|
||||
region_name=os.environ['AWS_REGION'],
|
||||
|
@ -12,3 +12,32 @@ class ObjectiveFunction(BaseModel):
|
||||
tcc_targets: List[Target]
|
||||
objective: AnyStr = "minimize"
|
||||
weight: Dict = {'tif': 1, 'tcc': 1}
|
||||
|
||||
def increment_targets_drift(self,
|
||||
limit: float or bool,
|
||||
all: bool = False,
|
||||
amount: float = 0.1,
|
||||
targets: list[Target] = []) -> bool:
|
||||
if all:
|
||||
for target in self.tif_targets:
|
||||
target.drift = round(target.drift + amount, 2)
|
||||
for target in self.tcc_targets:
|
||||
target.drift = round(target.drift + amount, 2)
|
||||
else:
|
||||
for target in targets:
|
||||
target.drift = round(target.drift + amount, 2)
|
||||
print(self.tif_targets)
|
||||
print(self.tcc_targets)
|
||||
return amount
|
||||
|
||||
def minimum_drift(self) -> float:
|
||||
minimum_drift = 0.0
|
||||
|
||||
for target in self.all_targets():
|
||||
if target.drift < minimum_drift:
|
||||
minimum_drift = target.drift
|
||||
|
||||
return minimum_drift
|
||||
|
||||
def all_targets(self) -> list[Target]:
|
||||
return self.tif_targets + self.tcc_targets
|
||||
|
@ -1,5 +1,5 @@
|
||||
from pydantic import BaseModel
|
||||
from typing import List, Optional
|
||||
from typing import List, Literal, Optional
|
||||
|
||||
import logging
|
||||
|
||||
@ -20,6 +20,7 @@ class SolverRun(BaseModel):
|
||||
total_form_items: int
|
||||
total_forms: int = 1
|
||||
theta_cut_score: float = 0.00
|
||||
drift_style: Literal['constant', 'variable'] = 'constant'
|
||||
advanced_options: Optional[AdvancedOptions]
|
||||
engine: str
|
||||
|
||||
|
@ -6,3 +6,4 @@ class Target(BaseModel):
|
||||
theta: float
|
||||
value: float
|
||||
result: Optional[float]
|
||||
drift: float = 0.0
|
||||
|
@ -122,99 +122,132 @@ class LoftService(Base):
|
||||
# iterate for number of forms that require creation
|
||||
# currently creates distinc forms with no item overlap
|
||||
while f < self.solver_run.total_forms:
|
||||
# setup vars
|
||||
items = LpVariable.dicts(
|
||||
"Item", [item.id for item in self.solver_run.items],
|
||||
lowBound=1,
|
||||
upBound=1,
|
||||
cat='Binary')
|
||||
bundles = LpVariable.dicts(
|
||||
"Bundle", [bundle.id for bundle in self.solver_run.bundles],
|
||||
lowBound=1,
|
||||
upBound=1,
|
||||
cat='Binary')
|
||||
# currently constant drift is supported
|
||||
# plan to support variable drift
|
||||
problem = None
|
||||
|
||||
# create problem
|
||||
problem = LpProblem("ata-form-generate", LpMinimize)
|
||||
problem_objective_functions = []
|
||||
# allow target drift to increment to keep trying
|
||||
# once limit has been reached loop will stop
|
||||
# at this point the latest solve attempt will be used
|
||||
# though likely to be infeasible
|
||||
while self.solver_run.objective_function.minimum_drift() <= 2.0:
|
||||
# setup vars
|
||||
items = LpVariable.dicts(
|
||||
"Item", [item.id for item in self.solver_run.items],
|
||||
lowBound=0,
|
||||
upBound=1,
|
||||
cat='Binary')
|
||||
bundles = LpVariable.dicts(
|
||||
"Bundle",
|
||||
[bundle.id for bundle in self.solver_run.bundles],
|
||||
lowBound=0,
|
||||
upBound=1,
|
||||
cat='Binary')
|
||||
|
||||
# dummy objective function, because it just makes things easier™
|
||||
# problem += lpSum(
|
||||
# [items[item.id] for item in self.solver_run.items])
|
||||
# create problem
|
||||
problem = LpProblem("ata-form-generate", LpMinimize)
|
||||
problem_objective_functions = []
|
||||
|
||||
# constraints
|
||||
# problem += lpSum([items[item.id]
|
||||
# for item in self.solver_run.items]) == self.solver_run.total_form_items, 'Total form items'
|
||||
problem += lpSum(
|
||||
[
|
||||
bundle.count * bundles[bundle.id]
|
||||
for bundle in self.solver_run.bundles
|
||||
] + [
|
||||
1 * items[item.id]
|
||||
for item in self.solver_run.unbundled_items()
|
||||
]
|
||||
) == self.solver_run.total_form_items, 'Total bundle form items for form'
|
||||
# dummy objective function, because it just makes things easier™
|
||||
# problem += lpSum(
|
||||
# [items[item.id] for item in self.solver_run.items])
|
||||
|
||||
# dynamic constraints
|
||||
problem = solver_helper.build_constraints(self.solver_run, problem,
|
||||
items, bundles)
|
||||
# constraints
|
||||
# problem += lpSum([items[item.id]
|
||||
# for item in self.solver_run.items]) == self.solver_run.total_form_items, 'Total form items'
|
||||
problem += lpSum(
|
||||
[
|
||||
bundle.count * bundles[bundle.id]
|
||||
for bundle in self.solver_run.bundles
|
||||
] + [
|
||||
1 * items[item.id]
|
||||
for item in self.solver_run.unbundled_items()
|
||||
]
|
||||
) == self.solver_run.total_form_items, 'Total bundle form items for form'
|
||||
|
||||
# multi-objective constraints
|
||||
logging.info('Creating TIF and TCC constraints')
|
||||
for target in self.solver_run.objective_function.tif_targets:
|
||||
# dynamic constraints
|
||||
problem = solver_helper.build_constraints(
|
||||
self.solver_run, problem, items, bundles)
|
||||
|
||||
tif = lpSum([
|
||||
bundle.tif(self.solver_run.irt_model, target.theta) *
|
||||
bundles[bundle.id] for bundle in self.solver_run.bundles
|
||||
] + [
|
||||
item.iif(self.solver_run, target.theta) * items[item.id]
|
||||
for item in self.solver_run.items
|
||||
])
|
||||
problem_objective_functions.append(tif)
|
||||
# problem += lpSum([
|
||||
# bundle.tif(self.solver_run.irt_model, target.theta) *
|
||||
# bundles[bundle.id] for bundle in self.solver_run.bundles
|
||||
# ] + [
|
||||
# item.iif(self.solver_run, target.theta) * items[item.id]
|
||||
# for item in self.solver_run.items
|
||||
# ]) >= target.value - 5, f'max tif theta ({target.theta}) target value {target.value}'
|
||||
# problem += lpSum([
|
||||
# bundle.tif(self.solver_run.irt_model, target.theta) *
|
||||
# bundles[bundle.id] for bundle in self.solver_run.bundles
|
||||
# ] + [
|
||||
# item.iif(self.solver_run, target.theta) * items[item.id]
|
||||
# for item in self.solver_run.items
|
||||
# ]) <= target.value + 5, f'min tif theta ({target.theta}) target value {target.value}'
|
||||
# multi-objective constraints
|
||||
logging.info('Creating TIF and TCC constraints')
|
||||
for target in self.solver_run.objective_function.tif_targets:
|
||||
|
||||
for target in self.solver_run.objective_function.tcc_targets:
|
||||
tcc = lpSum([
|
||||
bundle.trf(self.solver_run.irt_model, target.theta) *
|
||||
bundles[bundle.id] for bundle in self.solver_run.bundles
|
||||
] + [
|
||||
item.irf(self.solver_run, target.theta) * items[item.id]
|
||||
for item in self.solver_run.items
|
||||
])
|
||||
problem_objective_functions.append(tcc)
|
||||
# problem += lpSum([
|
||||
# bundle.trf(self.solver_run.irt_model, target.theta) *
|
||||
# bundles[bundle.id] for bundle in self.solver_run.bundles
|
||||
# ] + [
|
||||
# item.irf(self.solver_run, target.theta) * items[item.id]
|
||||
# for item in self.solver_run.items
|
||||
# ]) >= target.value - 15, f'max tcc theta ({target.theta}) target value {target.value}'
|
||||
# problem += lpSum([
|
||||
# bundle.trf(self.solver_run.irt_model, target.theta) *
|
||||
# bundles[bundle.id] for bundle in self.solver_run.bundles
|
||||
# ] + [
|
||||
# item.irf(self.solver_run, target.theta) * items[item.id]
|
||||
# for item in self.solver_run.items
|
||||
# ]) <= target.value + 15, f'min tcc theta ({target.theta}) target value {target.value}'
|
||||
tif = lpSum([
|
||||
bundle.tif(self.solver_run.irt_model, target.theta) *
|
||||
bundles[bundle.id]
|
||||
for bundle in self.solver_run.bundles
|
||||
] + [
|
||||
item.iif(self.solver_run, target.theta) *
|
||||
items[item.id] for item in self.solver_run.items
|
||||
])
|
||||
problem_objective_functions.append(tif)
|
||||
problem += lpSum([
|
||||
bundle.tif(self.solver_run.irt_model, target.theta) *
|
||||
bundles[bundle.id]
|
||||
for bundle in self.solver_run.bundles
|
||||
] + [
|
||||
item.iif(self.solver_run, target.theta) *
|
||||
items[item.id] for item in self.solver_run.items
|
||||
]) >= target.value - target.value * target.drift, f'max tif theta ({target.theta}) target value {target.value}'
|
||||
problem += lpSum([
|
||||
bundle.tif(self.solver_run.irt_model, target.theta) *
|
||||
bundles[bundle.id]
|
||||
for bundle in self.solver_run.bundles
|
||||
] + [
|
||||
item.iif(self.solver_run, target.theta) *
|
||||
items[item.id] for item in self.solver_run.items
|
||||
]) <= target.value + target.value * target.drift, f'min tif theta ({target.theta}) target value {target.value}'
|
||||
|
||||
# solve problem
|
||||
logging.info('Solving...')
|
||||
# problem.solve()
|
||||
problem.sequentialSolve(problem_objective_functions)
|
||||
logging.info('Solved...generating form and adding to solution')
|
||||
for target in self.solver_run.objective_function.tcc_targets:
|
||||
tcc = lpSum([
|
||||
bundle.trf(self.solver_run.irt_model, target.theta) *
|
||||
bundles[bundle.id]
|
||||
for bundle in self.solver_run.bundles
|
||||
] + [
|
||||
item.irf(self.solver_run, target.theta) *
|
||||
items[item.id] for item in self.solver_run.items
|
||||
])
|
||||
problem_objective_functions.append(tcc)
|
||||
problem += lpSum([
|
||||
bundle.trf(self.solver_run.irt_model, target.theta) *
|
||||
bundles[bundle.id]
|
||||
for bundle in self.solver_run.bundles
|
||||
] + [
|
||||
item.irf(self.solver_run, target.theta) *
|
||||
items[item.id] for item in self.solver_run.items
|
||||
]) >= target.value - target.value * target.drift, f'max tcc theta ({target.theta}) target value {target.value}'
|
||||
problem += lpSum([
|
||||
bundle.trf(self.solver_run.irt_model, target.theta) *
|
||||
bundles[bundle.id]
|
||||
for bundle in self.solver_run.bundles
|
||||
] + [
|
||||
item.irf(self.solver_run, target.theta) *
|
||||
items[item.id] for item in self.solver_run.items
|
||||
]) <= target.value + target.value * target.drift, f'min tcc theta ({target.theta}) target value {target.value}'
|
||||
|
||||
# solve problem
|
||||
logging.info('Solving...')
|
||||
# problem.solve()
|
||||
problem.sequentialSolve(problem_objective_functions)
|
||||
|
||||
# optimal solution found!
|
||||
if LpStatus[problem.status] == 'Optimal':
|
||||
logging.info(
|
||||
f'Problem solved...generating Form and adding to Solution with {self.solver_run.drift_style} drift \n\
|
||||
tif target drift: \n\
|
||||
{["theta @" + str(target.theta) + " - " + str(target.drift) for target in self.solver_run.objective_function.tif_targets]} \n\
|
||||
tcc target drift: \n\
|
||||
{["theta @" + str(target.theta) + " - " + str(target.drift) for target in self.solver_run.objective_function.tcc_targets]}'
|
||||
)
|
||||
break
|
||||
else:
|
||||
# increment drift to attempt to find optimal solution
|
||||
increment = self.solver_run.objective_function.increment_targets_drift(
|
||||
2.0, True)
|
||||
logging.info(
|
||||
f'Non Optimal Solution...widening Target ranges to {increment} using {self.solver_run.drift_style} drift'
|
||||
)
|
||||
|
||||
# add return items and create as a form
|
||||
form_items = service_helper.solution_items(problem.variables(),
|
||||
@ -224,7 +257,7 @@ class LoftService(Base):
|
||||
solution.forms.append(
|
||||
Form.create(form_items, self.solver_run,
|
||||
LpStatus[problem.status]))
|
||||
logging.info('Form generated and added to solution...')
|
||||
logging.info('Form generated and added to Solution...')
|
||||
|
||||
# successfull form, increment
|
||||
f += 1
|
||||
|
Loading…
x
Reference in New Issue
Block a user