formatting and print removal
This commit is contained in:
parent
0380401b2b
commit
e6e8f49816
@ -1,6 +1,7 @@
|
|||||||
# content of example.py
|
# content of example.py
|
||||||
from pulp import LpProblem, LpVariable, LpMinimize, LpStatus, lpSum
|
from pulp import LpProblem, LpVariable, LpMinimize, LpStatus, lpSum
|
||||||
|
|
||||||
|
|
||||||
def func(x):
|
def func(x):
|
||||||
return x + 1
|
return x + 1
|
||||||
|
|
||||||
@ -12,22 +13,11 @@ def test_pass():
|
|||||||
def test_failure():
|
def test_failure():
|
||||||
assert func(3) == 5
|
assert func(3) == 5
|
||||||
|
|
||||||
|
|
||||||
def yosh_loop():
|
def yosh_loop():
|
||||||
Items = [1,2,3,4,5]
|
Items = [1, 2, 3, 4, 5]
|
||||||
tif = {
|
tif = {1: 0.2, 2: 0.5, 3: 0.3, 4: 0.8, 5: 0.1}
|
||||||
1: 0.2,
|
iif = {1: 0.09, 2: 0.2, 3: 0.113, 4: 0.3, 5: 0.1}
|
||||||
2: 0.5,
|
|
||||||
3: 0.3,
|
|
||||||
4: 0.8,
|
|
||||||
5: 0.1
|
|
||||||
}
|
|
||||||
iif = {
|
|
||||||
1: 0.09,
|
|
||||||
2: 0.2,
|
|
||||||
3: 0.113,
|
|
||||||
4: 0.3,
|
|
||||||
5: 0.1
|
|
||||||
}
|
|
||||||
drift = 0.0
|
drift = 0.0
|
||||||
drift_limit = 0.2
|
drift_limit = 0.2
|
||||||
iif_target = 0.5
|
iif_target = 0.5
|
||||||
@ -37,12 +27,17 @@ def yosh_loop():
|
|||||||
|
|
||||||
while drift <= drift_limit:
|
while drift <= drift_limit:
|
||||||
prob = LpProblem("tif_tcc_test", LpMinimize)
|
prob = LpProblem("tif_tcc_test", LpMinimize)
|
||||||
prob += lpSum([(tif[i] + iif[i]) * item_vars[i] for i in Items]), "TifTccSum"
|
prob += lpSum([(tif[i] + iif[i]) * item_vars[i]
|
||||||
|
for i in Items]), "TifTccSum"
|
||||||
prob += lpSum([item_vars[i] for i in Items]) == 3, "TotalItems"
|
prob += lpSum([item_vars[i] for i in Items]) == 3, "TotalItems"
|
||||||
prob += lpSum([tif[i] * item_vars[i] for i in Items]) >= tif_target - (tif_target * drift), 'TifMin'
|
prob += lpSum([tif[i] * item_vars[i] for i in Items
|
||||||
prob += lpSum([tif[i] * item_vars[i] for i in Items]) <= tif_target + (tif_target * drift), 'TifMax'
|
]) >= tif_target - (tif_target * drift), 'TifMin'
|
||||||
prob += lpSum([iif[i] * item_vars[i] for i in Items]) >= iif_target - (iif_target * drift), 'TccMin'
|
prob += lpSum([tif[i] * item_vars[i] for i in Items
|
||||||
prob += lpSum([iif[i] * item_vars[i] for i in Items]) <= iif_target + (iif_target * drift), 'TccMax'
|
]) <= tif_target + (tif_target * drift), 'TifMax'
|
||||||
|
prob += lpSum([iif[i] * item_vars[i] for i in Items
|
||||||
|
]) >= iif_target - (iif_target * drift), 'TccMin'
|
||||||
|
prob += lpSum([iif[i] * item_vars[i] for i in Items
|
||||||
|
]) <= iif_target + (iif_target * drift), 'TccMax'
|
||||||
|
|
||||||
prob.solve()
|
prob.solve()
|
||||||
|
|
||||||
@ -62,5 +57,4 @@ def yosh_loop():
|
|||||||
|
|
||||||
|
|
||||||
def test_solver():
|
def test_solver():
|
||||||
print(yosh_loop())
|
|
||||||
assert yosh_loop() == 'Optimal'
|
assert yosh_loop() == 'Optimal'
|
||||||
|
Loading…
x
Reference in New Issue
Block a user