From e6e8f49816f4b6756b176933d9b793ed4b49718e Mon Sep 17 00:00:00 2001 From: Joshua Burman Date: Tue, 19 Apr 2022 14:49:31 -0400 Subject: [PATCH] formatting and print removal --- app/test/test_example.py | 36 +++++++++++++++--------------------- 1 file changed, 15 insertions(+), 21 deletions(-) diff --git a/app/test/test_example.py b/app/test/test_example.py index 51198ee..acdc04e 100644 --- a/app/test/test_example.py +++ b/app/test/test_example.py @@ -1,6 +1,7 @@ # content of example.py from pulp import LpProblem, LpVariable, LpMinimize, LpStatus, lpSum + def func(x): return x + 1 @@ -12,22 +13,11 @@ def test_pass(): def test_failure(): assert func(3) == 5 + def yosh_loop(): - Items = [1,2,3,4,5] - tif = { - 1: 0.2, - 2: 0.5, - 3: 0.3, - 4: 0.8, - 5: 0.1 - } - iif = { - 1: 0.09, - 2: 0.2, - 3: 0.113, - 4: 0.3, - 5: 0.1 - } + Items = [1, 2, 3, 4, 5] + tif = {1: 0.2, 2: 0.5, 3: 0.3, 4: 0.8, 5: 0.1} + iif = {1: 0.09, 2: 0.2, 3: 0.113, 4: 0.3, 5: 0.1} drift = 0.0 drift_limit = 0.2 iif_target = 0.5 @@ -37,12 +27,17 @@ def yosh_loop(): while drift <= drift_limit: prob = LpProblem("tif_tcc_test", LpMinimize) - prob += lpSum([(tif[i] + iif[i]) * item_vars[i] for i in Items]), "TifTccSum" + prob += lpSum([(tif[i] + iif[i]) * item_vars[i] + for i in Items]), "TifTccSum" prob += lpSum([item_vars[i] for i in Items]) == 3, "TotalItems" - prob += lpSum([tif[i] * item_vars[i] for i in Items]) >= tif_target - (tif_target * drift), 'TifMin' - prob += lpSum([tif[i] * item_vars[i] for i in Items]) <= tif_target + (tif_target * drift), 'TifMax' - prob += lpSum([iif[i] * item_vars[i] for i in Items]) >= iif_target - (iif_target * drift), 'TccMin' - prob += lpSum([iif[i] * item_vars[i] for i in Items]) <= iif_target + (iif_target * drift), 'TccMax' + prob += lpSum([tif[i] * item_vars[i] for i in Items + ]) >= tif_target - (tif_target * drift), 'TifMin' + prob += lpSum([tif[i] * item_vars[i] for i in Items + ]) <= tif_target + (tif_target * drift), 'TifMax' + prob += lpSum([iif[i] * item_vars[i] for i in Items + ]) >= iif_target - (iif_target * drift), 'TccMin' + prob += lpSum([iif[i] * item_vars[i] for i in Items + ]) <= iif_target + (iif_target * drift), 'TccMax' prob.solve() @@ -62,5 +57,4 @@ def yosh_loop(): def test_solver(): - print(yosh_loop()) assert yosh_loop() == 'Optimal'