Merge pull request #30 from yardstick/release/1.2.0

1.2.0
This commit is contained in:
brmnjsh 2022-03-29 11:48:53 -04:00 committed by GitHub
commit d818da4494
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
31 changed files with 1187 additions and 445 deletions

View File

@ -4,12 +4,14 @@ RUN apt-get update
RUN apt-get -y install coinor-cbc
RUN python -m pip install pulp
RUN python -m pip install pydantic
RUN python -m pip install pySqsListener
RUN python -m pip install daemonize
RUN python -m pip install sqspy
RUN mkdir /app
WORKDIR /app
ENV LOCAL_DEV True
# Bundle app source
COPY . /app

View File

@ -4,8 +4,8 @@ RUN apt-get update
RUN apt-get -y install coinor-cbc
RUN python -m pip install pulp
RUN python -m pip install pydantic
RUN python -m pip install pySqsListener
RUN python -m pip install daemonize
RUN python -m pip install sqspy
RUN mkdir /app
WORKDIR /app

51
Jenkinsfile vendored
View File

@ -1,25 +1,36 @@
def label = "docker-${UUID.randomUUID().toString()}"
podTemplate(label: label, inheritFrom: 'base') {
node(label) {
stage('Checkout Repository') {
container('base') {
checkout scm
}
pipeline {
agent {
kubernetes {
label "kaniko-${UUID.randomUUID().toString()}"
inheritFrom 'kaniko'
}
stage('Login to Dockerhub') {
withCredentials([usernamePassword(credentialsId: 'DockerHubAccessYardstick', usernameVariable: 'USER', passwordVariable: 'PASS')]) {
container('base') {
sh "docker login --username ${USER} --password ${PASS}"
}
environment {
REPOSITORY = 'yardstick/measure-solver'
}
stages {
stage('Build Kaniko image') {
steps {
withCredentials([usernamePassword(credentialsId: 'DockerHubAccessYardstick', usernameVariable: 'USER', passwordVariable: 'PASS')]) {
container('kaniko') {
checkout scm
// Setup docker credentials
sh 'echo "{\\"auths\\":{\\"https://index.docker.io/v1/\\":{\\"auth\\":\\"$(printf "%s:%s" "$USER" "$PASS" | base64 | tr -d \'\n\')\\"}}}" > /kaniko/.docker/config.json'
// Execute kaniko build
sh """
/kaniko/executor -f `pwd`/Dockerfile \
-c `pwd` \
--insecure=true \
--insecure-registry=docker-registry.default:5000 \
--cache=true \
--cache-repo=docker-registry.default:5000/${REPOSITORY} \
--destination ${env.REPOSITORY}:\$(echo ${BRANCH_NAME} | grep -Eo 'feature/([A-Za-z]+-[0-9]*)' | grep -Eo '[A-Za-z]+-[0-9]*' || \
echo ${BRANCH_NAME} | grep -Eo '(release|hotfix)/[[:digit:]]+\\.[[:digit:]]+\\.[[:digit:]]+' | grep -Eo '[[:digit:]]+\\.[[:digit:]]+\\.[[:digit:]]+' || \
echo ${BRANCH_NAME} | grep -Eo 'YASDEV-([[:digit:]]*)')
"""
}
}
}
}
stage('Build Docker image') {
container('base') {
sh "make display full branch=${BRANCH_NAME}"
}
}
}
}
}

View File

@ -1,39 +1,42 @@
import boto3
import os
import json
session = boto3.Session(
aws_access_key_id=os.environ['AWS_ACCESS_KEY_ID'],
aws_secret_access_key=os.environ['AWS_SECRET_ACCESS_KEY']
)
from lib.application_configs import ApplicationConfigs
s3 = session.resource('s3', region_name=os.environ['AWS_REGION'])
sqs = session.client('sqs', region_name=os.environ['AWS_REGION'])
session = boto3.Session(
aws_access_key_id=ApplicationConfigs.aws_access_key_id,
aws_secret_access_key=ApplicationConfigs.aws_secret_key)
# ToDo: Figure out a much better way of doing this.
# LocalStack wants endpoint_url, while prod doesnt :(
if ApplicationConfigs.local_dev_env:
s3 = session.resource('s3', region_name=ApplicationConfigs.region_name, endpoint_url=ApplicationConfigs.endpoint_url)
sqs = session.client('sqs', region_name=ApplicationConfigs.region_name, endpoint_url=ApplicationConfigs.endpoint_url)
else:
s3 = session.resource('s3', region_name=ApplicationConfigs.region_name)
sqs = session.client('sqs', region_name=ApplicationConfigs.region_name)
def get_key_from_message(body):
return body['Records'][0]['s3']['object']['key']
return body['Records'][0]['s3']['object']['key']
def get_bucket_from_message(body):
return body['Records'][0]['s3']['bucket']['name']
return body['Records'][0]['s3']['bucket']['name']
def get_object(key, bucket):
return s3.Object(
bucket_name=bucket,
key=key
).get()['Body'].read()
return s3.Object(bucket_name=bucket, key=key).get()['Body'].read()
def file_stream_upload(buffer, name, bucket):
return s3.Bucket(bucket).upload_fileobj(buffer, name)
return s3.Bucket(bucket).upload_fileobj(buffer, name)
def receive_message(queue, message_num=1, wait_time=1):
return sqs.receive_message(
QueueUrl=queue,
MaxNumberOfMessages=message_num,
WaitTimeSeconds=wait_time
)
return sqs.receive_message(QueueUrl=queue,
MaxNumberOfMessages=message_num,
WaitTimeSeconds=wait_time)
def delete_message(queue, receipt):
return sqs.delete_message(
QueueUrl=queue,
ReceiptHandle=receipt
)
return sqs.delete_message(QueueUrl=queue, ReceiptHandle=receipt)

View File

@ -0,0 +1,14 @@
def boolean_to_int(value: bool) -> int:
if value:
return 1
else:
return 0
def is_float(element: str) -> bool:
try:
float(element)
return True
except ValueError:
return False

View File

@ -1,5 +1,6 @@
import csv
import io
def file_stream_reader(f):
return csv.reader(io.StringIO(f.read().decode('ascii')))
return csv.reader(io.StringIO(f.read().decode('ascii')))

View File

@ -1,90 +1,132 @@
import csv
import io
import re
from tokenize import String
from typing import Tuple
def items_csv_to_dict(items_csv_reader):
items = []
headers = []
from helpers import common_helper
from models.item import Item
from models.solver_run import SolverRun
# get headers and items
for key, row in enumerate(items_csv_reader):
if key == 0:
headers = row
else:
item = { 'attributes': [] }
def csv_to_item(items_csv_reader, solver_run):
items = []
headers = []
# ensure that the b param is formatted correctly
if len(re.findall(".", row[len(headers) - 1])) >= 3:
for key, col in enumerate(headers):
if key == 0:
item[col] = row[key]
if key == 2:
# make sure passage id exists
if row[key]:
item['passage_id'] = row[key]
# b param - tmep fix! use irt model b param for proper reference
elif key == len(headers) - 1:
item['b_param'] = row[key]
elif key > 2 and key < len(headers) - 1:
item['attributes'].append({
'id': col,
'value': row[key],
'type': 'metadata'
})
# get headers and items
for key, row in enumerate(items_csv_reader):
if key == 0:
headers = row
else:
item = {'attributes': []}
items.append(item)
# ensure that the b param is formatted correctly
if row[len(headers) - 1] != '' and common_helper.is_float(row[len(headers) - 1]):
for key, col in enumerate(headers):
if solver_run.irt_model.formatted_b_param() == col:
value = float(row[key])
item['b_param'] = value
elif solver_run.get_constraint(
col) and solver_run.get_constraint(
col).reference_attribute.type == 'bundle':
if row[key]:
item[solver_run.get_constraint(
col).reference_attribute.id] = row[key]
elif solver_run.get_constraint(col):
constraint = solver_run.get_constraint(col)
item['attributes'].append({
'id':
col,
'value':
row[key],
'type':
constraint.reference_attribute.type
})
else:
if row[key]:
item[col] = row[key]
# confirm item is only added if it meets the criteria of 100% constraints as a pre-filter
valid_item = True
item = Item.parse_obj(item)
for constraint in solver_run.constraints:
if item.attribute_exists(constraint.reference_attribute) == False and constraint.minimum == 100:
valid_item = False
if valid_item: items.append(item)
return items
return items
def solution_to_file(buffer, total_form_items, forms):
wr = csv.writer(buffer, dialect='excel', delimiter=',')
wr = csv.writer(buffer, dialect='excel', delimiter=',')
# write header row for first row utilizing the total items all forms will have
# fill the rows with the targets and cut score then the items
header = ['status']
# write header row for first row utilizing the total items all forms will have
# fill the rows with the targets and cut score then the items
header = ['status']
for result in forms[0].tif_results:
header += [f'tif @ {round(result.theta, 2)}']
for result in forms[0].tif_results:
header += [f'tif @ {round(result.theta, 2)}']
for result in forms[0].tcc_results:
header += [f'tcc @ {round(result.theta, 2)}']
for result in forms[0].tcc_results:
header += [f'tcc @ {round(result.theta, 2)}']
header += ['cut score'] + [x + 1 for x in range(total_form_items)]
wr.writerow(header)
header += ['cut score'] + [x + 1 for x in range(total_form_items)]
wr.writerow(header)
# add each form as row to processed csv
for form in forms:
row = [form.status]
# add each form as row to processed csv
for form in forms:
row = [form.status]
for result in form.tif_results + form.tcc_results:
row += [f'target - {result.value}\nresult - {round(result.result, 2)}']
for result in form.tif_results + form.tcc_results:
row += [
f'target - {result.value}\nresult - {round(result.result, 2)}'
]
# provide generated items and cut score
row += [round(form.cut_score, 2)] + [item.id for item in form.items]
wr.writerow(row)
# provide generated items and cut score
row += [round(form.cut_score, 2)] + [item.id for item in form.items]
wr.writerow(row)
buff2 = io.BytesIO(buffer.getvalue().encode())
buff2 = io.BytesIO(buffer.getvalue().encode())
return buff2
return buff2
def error_to_file(buffer, error):
wr = csv.writer(buffer, dialect='excel', delimiter=',')
wr.writerow(['status'])
wr.writerow([error.args[0]])
wr = csv.writer(buffer, dialect='excel', delimiter=',')
wr.writerow(['status'])
wr.writerow([error.args[0]])
return io.BytesIO(buffer.getvalue().encode())
return io.BytesIO(buffer.getvalue().encode())
def key_to_uuid(key):
return re.split("_", key)[0]
return re.split("_", key)[0]
def solution_items(variables, solver_run):
form_items = []
for v in variables:
if v.varValue > 0:
item_id = v.name.replace('Item_', '')
item = solver_run.get_item(item_id)
# add item to list and then remove from master item list
form_items.append(item)
def solution_items(variables: list, solver_run: SolverRun) -> Tuple[list]:
form_items = []
solver_variables = []
return form_items
for v in variables:
if v.varValue > 0:
solver_variables.append(v.name)
if 'Item_' in v.name:
item_id = v.name.replace('Item_', '')
item = solver_run.get_item(int(item_id))
# add item to list and then remove from master item list
if item: form_items.append(item)
elif 'Bundle_' in v.name:
bundle_id = v.name.replace('Bundle_', '')
bundle = solver_run.get_bundle(int(bundle_id))
if bundle:
for item in bundle.items:
if item: form_items.append(item)
return form_items, solver_variables
def print_problem_variables(problem):
# Uncomment this as needed in local dev
# print(problem);
for v in problem.variables(): print(v.name, "=", v.varValue)

View File

@ -1,56 +1,86 @@
from pulp import lpSum
from pulp import lpSum, LpProblem
from random import randint, sample
import logging
from helpers.common_helper import *
from models.bundle import Bundle
from models.solver_run import SolverRun
from models.item import Item
from lib.errors.item_generation_error import ItemGenerationError
def build_constraints(solver_run, problem, items):
try:
total_form_items = solver_run.total_form_items
constraints = solver_run.constraints
def build_constraints(solver_run: SolverRun, problem: LpProblem,
items: list[Item], bundles: list[Bundle], selected_items: list[Item], selected_bundles: list[Bundle]) -> LpProblem:
logging.info('Creating Constraints...')
for constraint in constraints:
attribute = constraint.reference_attribute
min = constraint.minimum
max = constraint.maximum
try:
total_form_items = solver_run.total_form_items
constraints = solver_run.constraints
if attribute.type == 'metadata':
con = dict(zip([item.id for item in solver_run.items],
[item.attribute_exists(attribute)
for item in solver_run.items]))
problem += lpSum([con[item.id]
* items[item.id]
for item in solver_run.items]) >= round(total_form_items * (min / 100)), f'{attribute.id} - {attribute.value} - min'
problem += lpSum([con[item.id]
* items[item.id]
for item in solver_run.items]) <= round(total_form_items * (max / 100)), f'{attribute.id} - {attribute.value} - max'
elif attribute.type == 'bundle':
# TODO: account for many different bundle types, since the id condition in L33 could yield duplicates
total_bundles = randint(constraint.minimum, constraint.maximum)
selected_bundles = sample(solver_run.bundles, total_bundles)
total_bundle_items = 0
for constraint in constraints:
attribute = constraint.reference_attribute
min = constraint.minimum
max = constraint.maximum
for bundle in selected_bundles:
con = dict(zip([item.id for item in solver_run.items],
[(getattr(item, bundle.type, False) == bundle.id)
for item in solver_run.items]))
problem += lpSum([con[item.id]
* items[item.id]
for item in solver_run.items]) == bundle.count, f'Bundle constraint for {bundle.type} ({bundle.id})'
total_bundle_items += bundle.count
if attribute.type == 'metadata':
logging.info('Metadata Constraint Generating...')
# make sure all other items added to the form
# are not a part of any bundle
# currently only supports single bundle constraints, will need refactoring for multiple bundle constraints
con = dict(zip([item.id for item in solver_run.items],
[(getattr(item, attribute.id, None) == None)
for item in solver_run.items]))
problem += lpSum([con[item.id]
* items[item.id]
for item in solver_run.items]) == solver_run.total_form_items - total_bundle_items, f'Remaining items are not of a bundle type'
problem += lpSum(
[
len(bundle.items_with_attribute(attribute)) * bundles[bundle.id] for bundle in selected_bundles
] +
[
item.attribute_exists(attribute).real * items[item.id] for item in selected_items
]
) >= round(total_form_items * (min / 100)), f'{attribute.id} - {attribute.value} - min'
problem += lpSum(
[
len(bundle.items_with_attribute(attribute)) * bundles[bundle.id] for bundle in selected_bundles
] +
[
item.attribute_exists(attribute).real * items[item.id] for item in selected_items
]
) <= round(total_form_items * (max / 100)), f'{attribute.id} - {attribute.value} - max'
elif attribute.type == 'bundle':
logging.info('Bundles Constraint Generating...')
# TODO: account for many different bundle types, since the id condition in L33 could yield duplicates
if selected_bundles != None:
# make sure the total bundles used in generated form is limited between min-max set
problem += lpSum([
bundles[bundle.id] for bundle in selected_bundles
]) == randint(int(constraint.minimum),
int(constraint.maximum))
logging.info('Constraints Created...')
return problem
except ValueError as error:
logging.error(error)
raise ItemGenerationError(
"Bundle min and/or max larger than bundle amount provided",
error.args[0])
return problem
except ValueError as error:
logging.error(error)
raise ItemGenerationError("Bundle min and/or max larger than bundle amount provided", error.args[0])
def get_random_bundles(total_form_items: int,
bundles: list[Bundle],
min: int,
max: int,
found_bundles=False) -> list[Bundle]:
selected_bundles = None
total_bundle_items = 0
total_bundles = randint(min, max)
logging.info(f'Selecting Bundles (total of {total_bundles})...')
while found_bundles == False:
selected_bundles = sample(bundles, total_bundles)
total_bundle_items = sum(bundle.count for bundle in selected_bundles)
if total_bundle_items <= total_form_items:
found_bundles = True
if found_bundles == True:
return selected_bundles
else:
return get_random_bundles(total_form_items, total_bundles - 1, bundles)

View File

@ -1,9 +1,11 @@
import io
import tarfile
def raw_to_tar(raw_object):
tarball = io.BytesIO(raw_object)
return tarfile.open(fileobj=tarball, mode='r:gz')
tarball = io.BytesIO(raw_object)
return tarfile.open(fileobj=tarball, mode='r:gz')
def extract_file_from_tar(tar, file_name):
return tar.extractfile(tar.getmember(file_name))
return tar.extractfile(tar.getmember(file_name))

View File

@ -0,0 +1,12 @@
import os
from pydantic.dataclasses import dataclass
@dataclass
class ApplicationConfigs():
region_name = os.environ.get('AWS_REGION', 'ca-central-1')
aws_access_key_id = os.environ.get('AWS_ACCESS_KEY_ID', '')
aws_secret_key = os.environ.get('AWS_SECRET_ACCESS_KEY', '')
sqs_queue = os.environ.get('SQS_QUEUE', '')
endpoint_url = os.environ.get('ENDPOINT_URL', '')
s3_processed_bucket = os.environ.get('S3_PROCESSED_BUCKET', 'measure-local-solver-processed')
local_dev_env = os.environ.get('LOCAL_DEV', False) == 'True'

View File

@ -1,2 +1,2 @@
class ItemGenerationError(Exception):
pass
pass

View File

@ -3,22 +3,28 @@ import logging
from lib.irt.models.three_parameter_logistic import ThreeParameterLogistic
from lib.errors.item_generation_error import ItemGenerationError
class ItemInformationFunction():
def __init__(self, irt_model):
self.model_data = irt_model
# determines the amount of information for a given question at a given theta (ability level)
# further detailed on page 161, equation 4 here:
# https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5978482/pdf/10.1177_0146621615613308.pdf
def calculate(self, **kwargs):
try:
if self.model_data.model == '3PL':
p = ThreeParameterLogistic(self.model_data, kwargs).result()
q = 1 - p
return (self.model_data.a_param * q * (p - self.model_data.c_param)**2) / (p * ((1 - self.model_data.c_param)**2))
else:
# potentially error out
raise ItemGenerationError("irt model not supported or provided")
except ZeroDivisionError as error:
logging.error(error)
raise ItemGenerationError("params not well formatted", error.args[0])
class ItemInformationFunction():
def __init__(self, irt_model):
self.model_data = irt_model
# determines the amount of information for a given question at a given theta (ability level)
# further detailed on page 161, equation 4 here:
# https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5978482/pdf/10.1177_0146621615613308.pdf
def calculate(self, **kwargs):
try:
if self.model_data.model == '3PL':
p = ThreeParameterLogistic(self.model_data, kwargs).result()
q = 1 - p
return (self.model_data.a_param * q *
(p - self.model_data.c_param)**2) / (p * (
(1 - self.model_data.c_param)**2))
else:
# potentially error out
raise ItemGenerationError(
"irt model not supported or provided")
except ZeroDivisionError as error:
logging.error(error)
raise ItemGenerationError("params not well formatted",
error.args[0])

View File

@ -1,12 +1,14 @@
from lib.irt.models.three_parameter_logistic import ThreeParameterLogistic
from lib.errors.item_generation_error import ItemGenerationError
class ItemResponseFunction():
def __init__(self, irt_model):
self.model_data = irt_model
def calculate(self, **kwargs):
if self.model_data.model == '3PL':
return ThreeParameterLogistic(self.model_data, kwargs).result()
else:
raise ItemGenerationError("irt model not supported or provided")
class ItemResponseFunction():
def __init__(self, irt_model):
self.model_data = irt_model
def calculate(self, **kwargs):
if self.model_data.model == '3PL':
return ThreeParameterLogistic(self.model_data, kwargs).result()
else:
raise ItemGenerationError("irt model not supported or provided")

View File

@ -1,16 +1,18 @@
class ThreeParameterLogistic:
def __init__(self, model_params, kwargs):
self.model_params = model_params
# check if exists, if not error out
self.b_param = kwargs['b_param']
self.e = 2.71828
self.theta = kwargs['theta']
# contains the primary 3pl function, determining the probably of an inidividual
# that an individual at a certain theta would get a particular question correct
# detailed further on page 161, equation 1 here:
# https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5978482/pdf/10.1177_0146621615613308.pdf
def result(self):
a = self.model_params.a_param
c = self.model_params.c_param
return c + (1 - c) * (1 / (1 + self.e**(-a * (self.theta - self.b_param))))
def __init__(self, model_params, kwargs):
self.model_params = model_params
# check if exists, if not error out
self.b_param = kwargs['b_param']
self.e = 2.71828
self.theta = kwargs['theta']
# contains the primary 3pl function, determining the probably of an inidividual
# that an individual at a certain theta would get a particular question correct
# detailed further on page 161, equation 1 here:
# https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5978482/pdf/10.1177_0146621615613308.pdf
def result(self):
a = self.model_params.a_param
c = self.model_params.c_param
return c + (1 - c) * (1 / (1 + self.e**(-a *
(self.theta - self.b_param))))

View File

@ -1,19 +1,22 @@
from lib.irt.item_information_function import ItemInformationFunction
class TestInformationFunction():
def __init__(self, irt_model):
self.irt_model = irt_model
self.iif = ItemInformationFunction(irt_model)
# determins the amount of information
# at a certain theta (ability level) of the sum of a question set correct
# detailed further on page 166, equation 4 here:
# https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5978482/pdf/10.1177_0146621615613308.pdf
def calculate(self, items, **kwargs):
sum = 0
def __init__(self, irt_model):
self.irt_model = irt_model
self.iif = ItemInformationFunction(irt_model)
for item in items:
result = self.iif.calculate(b_param=item.b_param, theta=kwargs['theta'])
sum += result
# determins the amount of information
# at a certain theta (ability level) of the sum of a question set correct
# detailed further on page 166, equation 4 here:
# https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5978482/pdf/10.1177_0146621615613308.pdf
def calculate(self, items, **kwargs):
sum = 0
return sum
for item in items:
result = self.iif.calculate(b_param=item.b_param,
theta=kwargs['theta'])
sum += result
return sum

View File

@ -1,20 +1,23 @@
from lib.irt.item_response_function import ItemResponseFunction
# otherwise known as the Test Characteristic Curve (TCC)
class TestResponseFunction():
def __init__(self, irt_model):
self.irt_model = irt_model
self.irf = ItemResponseFunction(irt_model)
# determins the probably of an inidividual
# at a certain theta (ability level) would get a sum of questions correct
# detailed further on page 166, equation 3 here:
# https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5978482/pdf/10.1177_0146621615613308.pdf
def calculate(self, items, **kwargs):
sum = 0
def __init__(self, irt_model):
self.irt_model = irt_model
self.irf = ItemResponseFunction(irt_model)
for item in items:
result = self.irf.calculate(b_param=item.b_param, theta=kwargs['theta'])
sum += result
# determine the probability of an individual
# at a certain theta (ability level) would get a sum of questions correct
# detailed further on page 166, equation 3 here:
# https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5978482/pdf/10.1177_0146621615613308.pdf
def calculate(self, items, **kwargs):
sum = 0
return sum
for item in items:
result = self.irf.calculate(b_param=item.b_param,
theta=kwargs['theta'])
sum += result
return sum

View File

@ -1,36 +1,57 @@
import os, sys, logging
from lib.application_configs import ApplicationConfigs
from services.loft_service import LoftService
from helpers import aws_helper
from daemonize import Daemonize
from sqs_listener import SqsListener
from sqspy import Consumer
logging.basicConfig(stream=sys.stdout, level=logging.INFO, format="%(levelname)s %(asctime)s - %(message)s")
logging.basicConfig(stream=sys.stdout,
level=logging.INFO,
format="%(levelname)s %(asctime)s - %(message)s")
class ServiceListener(SqsListener):
def handle_message(self, body, attributes, messages_attributes):
# gather/manage/process data based on the particular needs
logging.info('Incoming message: %s', body)
service = LoftService(body)
service.process()
class ServiceListener(Consumer):
def handle_message(self, body, attributes, messages_attributes):
# gather/manage/process data based on the particular needs
logging.info('Incoming message: %s', body)
service = LoftService(body)
service.process()
logging.info('Process complete for %s', service.file_name)
logging.info('Process complete for %s', service.file_name)
def main():
logging.info('Starting Solver Service (v1.1.0)...')
listener = ServiceListener(
os.environ['SQS_QUEUE'],
region_name=os.environ['AWS_REGION'],
aws_access_key=os.environ['AWS_ACCESS_KEY_ID'],
aws_secret_key=os.environ['AWS_SECRET_ACCESS_KEY'],
queue_url=os.environ['SQS_QUEUE']
)
listener.listen()
logging.info('Starting Solver Service: Tokyo Drift (v1.2)...')
# ToDo: Figure out a much better way of doing this.
# LocalStack wants 'endpoint_url', while prod doesnt :(
if ApplicationConfigs.local_dev_env:
listener = ServiceListener(
None,
ApplicationConfigs.sqs_queue,
create_queue=False,
region_name=ApplicationConfigs.region_name,
aws_access_key=ApplicationConfigs.aws_access_key_id,
aws_secret_key=ApplicationConfigs.aws_secret_key,
endpoint_url=ApplicationConfigs.endpoint_url)
else:
listener = ServiceListener(
None,
ApplicationConfigs.sqs_queue,
create_queue=False,
region_name=ApplicationConfigs.region_name,
aws_access_key=ApplicationConfigs.aws_access_key_id,
aws_secret_key=ApplicationConfigs.aws_secret_key)
listener.listen()
if __name__ == '__main__':
myname=os.path.basename(sys.argv[0])
pidfile='/tmp/%s' % myname
daemon = Daemonize(app=myname,pid=pidfile, action=main, foreground=True)
daemon.start()
myname = os.path.basename(sys.argv[0])
pidfile = '/tmp/%s' % myname
daemon = Daemonize(app=myname, pid=pidfile, action=main, foreground=True)
daemon.start()

View File

@ -1,11 +1,12 @@
from pydantic import BaseModel
from typing import List, Optional, Dict
class AdvancedOptions(BaseModel):
linearity_check: Optional[bool]
show_progress: Optional[bool]
max_solution_time: Optional[int]
brand_bound_tolerance: Optional[float]
max_forms: Optional[int]
precision: Optional[float]
extra_param_range: Optional[List[Dict]]
linearity_check: Optional[bool]
show_progress: Optional[bool]
max_solution_time: Optional[int]
brand_bound_tolerance: Optional[float]
max_forms: Optional[int]
precision: Optional[float]
extra_param_range: Optional[List[Dict]]

View File

@ -1,7 +1,8 @@
from pydantic import BaseModel
from typing import Optional
class Attribute(BaseModel):
value: Optional[str]
type: Optional[str]
id: str
value: Optional[str]
type: Optional[str]
id: str

View File

@ -1,6 +1,48 @@
from pydantic import BaseModel
from typing import List
from lib.irt.test_information_function import TestInformationFunction
from lib.irt.test_response_function import TestResponseFunction
from models.attribute import Attribute
from models.item import Item
from models.irt_model import IRTModel
class Bundle(BaseModel):
id: int
count: int
type: str
id: int
count: int
items: List[Item]
type: str
def tif(self, irt_model: IRTModel, theta: float) -> float:
return TestInformationFunction(irt_model).calculate(self.items, theta=theta)
def trf(self, irt_model: IRTModel, theta: float) -> float:
return TestResponseFunction(irt_model).calculate(self.items, theta=theta)
def tif_trf_sum(self, solver_run):
return self.__trf_sum(solver_run) + self.__tif_sum(solver_run)
def items_with_attribute(self, attribute: Attribute) -> List[Item]:
items = []
for item in self.items:
if item.attribute_exists(attribute): items.append(item)
return items
def __tif_sum(self, solver_run):
total = 0
for target in solver_run.objective_function.tcc_targets:
total += self.tif(solver_run.irt_model, target.theta)
return total
def __trf_sum(self, solver_run):
total = 0
for target in solver_run.objective_function.tcc_targets:
total += self.trf(solver_run.irt_model, target.theta)
return total

View File

@ -2,7 +2,8 @@ from pydantic import BaseModel
from models.attribute import Attribute
class Constraint(BaseModel):
reference_attribute: Attribute
minimum: float
maximum: float
reference_attribute: Attribute
minimum: float
maximum: float

View File

@ -1,26 +1,31 @@
from pydantic import BaseModel
from typing import List
from typing import List, TypeVar, Type
from helpers import irt_helper
from models.solver_run import SolverRun
from models.item import Item
from models.target import Target
from lib.irt.test_response_function import TestResponseFunction
class Form(BaseModel):
items: List[Item]
cut_score: float
tif_results: List[Target]
tcc_results: List[Target]
status: str = 'Not Optimized'
_T = TypeVar("_T")
@classmethod
def create(cls, items, solver_run, status):
return cls(
items=items,
cut_score=TestResponseFunction(solver_run.irt_model).calculate(items, theta=solver_run.theta_cut_score),
tif_results=irt_helper.generate_tif_results(items, solver_run),
tcc_results=irt_helper.generate_tcc_results(items, solver_run),
status=status
)
class Form(BaseModel):
items: List[Item]
cut_score: float
tif_results: List[Target]
tcc_results: List[Target]
status: str = 'Not Optimized'
solver_variables: List[str]
@classmethod
def create(cls: Type[_T], items: list, solver_run: SolverRun, status: str, solver_variables: list) -> _T:
return cls(
items=items,
cut_score=TestResponseFunction(solver_run.irt_model).calculate(
items, theta=solver_run.theta_cut_score),
tif_results=irt_helper.generate_tif_results(items, solver_run),
tcc_results=irt_helper.generate_tcc_results(items, solver_run),
status=status,
solver_variables=solver_variables)

View File

@ -1,8 +1,13 @@
from pydantic import BaseModel
from typing import Dict
class IRTModel(BaseModel):
a_param: float
b_param: Dict = {"schema_bson_id": str, "field_bson_id": str}
c_param: float
model: str
a_param: float
b_param: Dict = {"schema_bson_id": str, "field_bson_id": str}
c_param: float
model: str
def formatted_b_param(self):
return self.b_param['schema_bson_id'] + '-' + self.b_param[
'field_bson_id']

View File

@ -7,25 +7,47 @@ from lib.irt.item_response_function import ItemResponseFunction
from lib.irt.item_information_function import ItemInformationFunction
class Item(BaseModel):
id: int
passage_id: Optional[int]
attributes: List[Attribute]
b_param: float = 0.00
id: int
passage_id: Optional[int]
workflow_state: Optional[str]
attributes: List[Attribute]
b_param: float = 0.00
def iif(self, solver_run, theta):
return ItemInformationFunction(solver_run.irt_model).calculate(b_param=self.b_param,theta=theta)
def iif(self, solver_run, theta):
return ItemInformationFunction(solver_run.irt_model).calculate(b_param=self.b_param, theta=theta)
def irf(self, solver_run, theta):
return ItemResponseFunction(solver_run.irt_model).calculate(b_param=self.b_param,theta=theta)
def irf(self, solver_run, theta):
return ItemResponseFunction(solver_run.irt_model).calculate(b_param=self.b_param, theta=theta)
def get_attribute(self, ref_attribute):
for attribute in self.attributes:
if attribute.id == ref_attribute.id and attribute.value == ref_attribute.value:
return attribute.value
return False
def get_attribute(self, ref_attribute: Attribute) -> Attribute or None:
for attribute in self.attributes:
if self.attribute_exists(ref_attribute):
return attribute
def attribute_exists(self, ref_attribute):
for attribute in self.attributes:
if attribute.id == ref_attribute.id and attribute.value == ref_attribute.value:
return True
return False
return None
def attribute_exists(self, ref_attribute: Attribute) -> bool:
for attribute in self.attributes:
if attribute.id == ref_attribute.id and attribute.value.lower(
) == ref_attribute.value.lower():
return True
return False
def iif_irf_sum(self, solver_run):
return self.__iif_sum(solver_run) + self.__irf_sum(solver_run)
def __iif_sum(self, solver_run):
total = 0
for target in solver_run.objective_function.tif_targets:
total += self.iif(solver_run, target.theta)
return total
def __irf_sum(self, solver_run):
total = 0
for target in solver_run.objective_function.tif_targets:
total += self.irf(solver_run, target.theta)
return total

View File

@ -3,11 +3,48 @@ from typing import Dict, List, AnyStr
from models.target import Target
class ObjectiveFunction(BaseModel):
# minimizing tif/tcc target value is only option currently
# as we add more we can build this out to be more dynamic
# likely with models representing each objective function type
tif_targets: List[Target]
tcc_targets: List[Target]
objective: AnyStr = "minimize"
weight: Dict = {'tif': 1, 'tcc': 1}
# minimizing tif/tcc target value is only option currently
# as we add more we can build this out to be more dynamic
# likely with models representing each objective function type
tif_targets: List[Target]
tcc_targets: List[Target]
target_variance_percentage: int = 10
objective: AnyStr = "minimize"
weight: Dict = {'tif': 1, 'tcc': 1}
def increment_targets_drift(self,
limit: float or bool,
all: bool = False,
amount: float = 0.1,
targets: list[Target] = []) -> bool:
if all:
for target in self.tif_targets:
target.drift = round(target.drift + amount, 2)
for target in self.tcc_targets:
target.drift = round(target.drift + amount, 2)
else:
for target in targets:
target.drift = round(target.drift + amount, 2)
print(self.tif_targets)
print(self.tcc_targets)
return amount
def update_targets_drift(self, amount: float = 0.0):
for target in self.tif_targets:
target.drift = round(amount, 2)
for target in self.tcc_targets:
target.drift = round(amount, 2)
def minimum_drift(self) -> float:
minimum_drift = 0.0
for target in self.all_targets():
if target.drift < minimum_drift:
minimum_drift = target.drift
return minimum_drift
def all_targets(self) -> list[Target]:
return self.tif_targets + self.tcc_targets

View File

@ -3,6 +3,7 @@ from typing import List
from models.form import Form
class Solution(BaseModel):
response_id: int
forms: List[Form]
response_id: int
forms: List[Form]

View File

@ -1,5 +1,8 @@
from pydantic import BaseModel
from typing import List, Optional
from typing import List, Literal, Optional
import logging
import random
from models.item import Item
from models.constraint import Constraint
@ -8,58 +11,119 @@ from models.bundle import Bundle
from models.objective_function import ObjectiveFunction
from models.advanced_options import AdvancedOptions
class SolverRun(BaseModel):
items: List[Item]
bundles: Optional[Bundle]
constraints: List[Constraint]
irt_model: IRTModel
objective_function: ObjectiveFunction
total_form_items: int
total_forms: int = 1
theta_cut_score: float = 0.00
advanced_options: Optional[AdvancedOptions]
engine: str
items: List[Item] = []
bundles: list[Bundle] = []
constraints: List[Constraint]
irt_model: IRTModel
objective_function: ObjectiveFunction
total_form_items: int
total_forms: int = 1
theta_cut_score: float = 0.00
drift_style: Literal['constant', 'variable'] = 'constant'
advanced_options: Optional[AdvancedOptions]
engine: str
def get_item(self, item_id):
for item in self.items:
if str(item.id) == item_id:
return item
return False
def get_item(self, item_id: int) -> Item or None:
for item in self.items:
if item.id == item_id:
return item
def remove_items(self, items):
self.items = [item for item in self.items if item not in items]
return True
def get_bundle(self, bundle_id: int) -> Bundle or None:
for bundle in self.bundles:
if bundle.id == bundle_id:
return bundle
def generate_bundles(self):
bundle_constraints = (constraint.reference_attribute for constraint in self.constraints if constraint.reference_attribute.type == 'bundle')
def get_constraint_by_type(self, type: str) -> Constraint or None:
for constraint in self.constraints:
if type == constraint.reference_attribute.type:
return constraint
for bundle_constraint in bundle_constraints:
type_attribute = bundle_constraint.id
def remove_items(self, items: list[Item]) -> bool:
self.items = [item for item in self.items if item not in items]
return True
for item in self.items:
attribute_id = getattr(item, type_attribute, None)
def generate_bundles(self):
logging.info('Generating Bundles...')
# confirms bundle constraints exists
bundle_constraints = (
constraint.reference_attribute for constraint in self.constraints
if constraint.reference_attribute.type == 'bundle')
# make sure the item has said attribute
if attribute_id != None:
# if there are pre-existing bundles, add new or increment existing
# else create array with new bundle
if self.bundles != None:
# get index of the bundle in the bundles list if exists or None if it doesn't
bundle_index = next((index for (index, bundle) in enumerate(self.bundles) if bundle.id == attribute_id and bundle.type == type_attribute), None)
for bundle_constraint in bundle_constraints:
type_attribute = bundle_constraint.id
# if the index doesn't exist add the new bundle of whatever type
# else increment the count of the current bundle
if bundle_index == None:
self.bundles.append(Bundle(
id=attribute_id,
count=1,
type=type_attribute
))
else:
self.bundles[bundle_index].count += 1
else:
self.bundles = [Bundle(
id=attribute_id,
count=1,
type=type_attribute
)]
for item in self.items:
attribute_id = getattr(item, type_attribute, None)
# make sure the item has said attribute
if attribute_id != None:
# if there are pre-existing bundles, add new or increment existing
# else create array with new bundle
if self.bundles != None:
# get index of the bundle in the bundles list if exists or None if it doesn't
bundle_index = next(
(index
for (index, bundle) in enumerate(self.bundles)
if bundle.id == attribute_id
and bundle.type == type_attribute), None)
# if the index doesn't exist add the new bundle of whatever type
# else increment the count of the current bundle
if bundle_index == None:
self.bundles.append(
Bundle(id=attribute_id,
count=1,
items=[item],
type=type_attribute))
else:
self.bundles[bundle_index].count += 1
self.bundles[bundle_index].items.append(item)
else:
self.bundles = [
Bundle(id=attribute_id,
count=1,
items=[item],
type=type_attribute)
]
# temporary compensator for bundle item limits, since we shouldn't be using cases with less than 3 items
# ideally this should be in the bundles model as a new attribute to handle "constraints of constraints"
logging.info('Removing bundles with items < 3')
for k, v in enumerate(self.bundles):
bundle = self.bundles[k]
if bundle.count < 3: del self.bundles[k]
logging.info('Bundles Generated...')
def get_constraint(self, name: str) -> Constraint:
return next((constraint for constraint in self.constraints
if constraint.reference_attribute.id == name), None)
def unbundled_items(self) -> list:
# since the only bundles are based on passage id currently
# in the future when we have more than just passage based bundles
# we'll need to develop a more sophisticated way of handling this concern
bundle_constraints = (
constraint.reference_attribute for constraint in self.constraints
if constraint.reference_attribute.type == 'bundle')
if len(list(bundle_constraints)) > 0:
return [item for item in self.items if item.passage_id == None]
else:
return self.items
def select_items_by_percent(self, percent: int) -> list[Item]:
items = self.unbundled_items()
total_items = len(items)
selected_items_amount = round(total_items - (total_items *
(percent / 100)))
return random.sample(items, selected_items_amount)
def select_bundles_by_percent(self, percent: int) -> list[Bundle]:
total_bundles = len(self.bundles)
selected_bundles_amount = round(total_bundles - (total_bundles *
(percent / 100)))
return random.sample(self.bundles, selected_bundles_amount)

View File

@ -2,6 +2,21 @@ from pydantic import BaseModel
from typing import Optional
class Target(BaseModel):
theta: float
value: float
result: Optional[float]
theta: float
value: float
result: Optional[float]
drift: float = 0.0
@classmethod
def max_drift(cls) -> int:
return 15
@classmethod
def max_drift_increment(cls) -> int:
return 1 # 10%
def minimum(self) -> float:
return self.value - (self.value * self.drift)
def maximum(self) -> float:
return self.value + (self.value * self.drift)

View File

@ -1,4 +1,5 @@
class Base:
def __init__(self, source, ingest_type='message'):
self.ingest_type = ingest_type
self.source = source
def __init__(self, source, ingest_type='message'):
self.ingest_type = ingest_type
self.source = source

View File

@ -1,118 +1,259 @@
import os, json, random, io, logging
from pulp import LpProblem, LpVariable, LpMinimize, LpStatus, lpSum
from pulp import LpProblem, LpVariable, LpMinimize, LpMaximize, LpAffineExpression, LpConstraint, LpStatus, lpSum
from lib.application_configs import ApplicationConfigs
from helpers import aws_helper, tar_helper, csv_helper, service_helper, solver_helper
from lib.errors.item_generation_error import ItemGenerationError
from models.solver_run import SolverRun
from models.solution import Solution
from models.form import Form
from models.item import Item
from models.target import Target
from services.base import Base
class LoftService(Base):
def process(self):
try:
self.solver_run = SolverRun.parse_obj(self.retreive_attributes_from_message())
self.solver_run.generate_bundles()
self.solution = self.generate_solution()
self.result = self.stream_to_s3_bucket()
except ItemGenerationError as error:
self.result = self.stream_to_s3_bucket(error)
except TypeError as error:
logging.error(error)
self.result = self.stream_to_s3_bucket(ItemGenerationError("Provided params causing error in calculation results"))
def retreive_attributes_from_message(self):
logging.info('Retrieving attributes from message...')
# get s3 object
self.key = aws_helper.get_key_from_message(self.source)
s3_object = aws_helper.get_object(self.key, aws_helper.get_bucket_from_message(self.source))
def process(self):
try:
self.solver_run = self.create_solver_run_from_attributes()
self.solver_run.generate_bundles()
self.solution = self.generate_solution()
self.result = self.stream_to_s3_bucket()
except ItemGenerationError as error:
self.result = self.stream_to_s3_bucket(error)
except TypeError as error:
logging.error(error)
self.result = self.stream_to_s3_bucket(
ItemGenerationError(
"Provided params causing error in calculation results"))
# convert to tar
self.tar = tar_helper.raw_to_tar(s3_object)
def create_solver_run_from_attributes(self) -> SolverRun:
logging.info('Retrieving attributes from message...')
# get s3 object
self.key = aws_helper.get_key_from_message(self.source)
s3_object = aws_helper.get_object(
self.key, aws_helper.get_bucket_from_message(self.source))
# get attributes file and convert to dict
attributes = json.loads(tar_helper.extract_file_from_tar(self.tar , 'solver_run_attributes.json').read())
# convert to tar
self.tar = tar_helper.raw_to_tar(s3_object)
# get items file and convert to dict
items_csv = tar_helper.extract_file_from_tar(self.tar , 'items.csv')
items_csv_reader = csv_helper.file_stream_reader(items_csv)
# get attributes file and convert to dict
attributes = json.loads(
tar_helper.extract_file_from_tar(
self.tar, 'solver_run_attributes.json').read())
# add items to attributes dict
attributes['items'] = service_helper.items_csv_to_dict(items_csv_reader)
logging.info('Processed Attributes...')
# create solver run
solver_run = SolverRun.parse_obj(attributes)
return attributes
# get items file and convert to dict
items_csv = tar_helper.extract_file_from_tar(self.tar, 'items.csv')
items_csv_reader = csv_helper.file_stream_reader(items_csv)
def generate_solution(self):
# unsolved solution
solution = Solution(
response_id=random.randint(100, 5000),
forms=[]
)
# add items to solver run
solver_run.items = service_helper.csv_to_item(items_csv_reader,
solver_run)
# counter for number of forms
f = 0
logging.info('Processed Attributes...')
# iterate for number of forms that require creation
# currently creates distinc forms with no item overlap
while f < self.solver_run.total_forms:
# setup vars
items = LpVariable.dicts(
"Item", [item.id for item in self.solver_run.items], lowBound=1, upBound=1, cat='Binary')
problem_objection_functions = []
return solver_run
# create problem
problem = LpProblem("ata-form-generate", LpMinimize)
def generate_solution(self) -> Solution:
logging.info('Generating Solution...')
# dummy objective function, because it just makes things easier™
problem += lpSum([items[item.id]
for item in self.solver_run.items])
solution = Solution(response_id=random.randint(100, 5000),
forms=[]) # unsolved solution
# constraints
problem += lpSum([items[item.id]
for item in self.solver_run.items]) == self.solver_run.total_form_items, 'Total form items'
# iterate for number of forms that require creation
for form_count in range(self.solver_run.total_forms):
form_number = form_count + 1
current_drift = 0 # FF Tokyo Drift
# dynamic constraints
problem = solver_helper.build_constraints(self.solver_run, problem, items)
# adding an element of randomness to the items and bundles used
selected_items = self.solver_run.select_items_by_percent(30)
selected_bundles = self.solver_run.select_bundles_by_percent(
30)
# multi-objective constraints
for target in self.solver_run.objective_function.tif_targets:
problem += lpSum([item.iif(self.solver_run, target.theta)*items[item.id]
for item in self.solver_run.items]) <= target.value, f'min tif theta ({target.theta}) target value {target.value}'
# setup common Solver variables
items = LpVariable.dicts("Item",
[item.id for item in selected_items],
lowBound=0,
upBound=1,
cat='Binary')
bundles = LpVariable.dicts(
"Bundle", [bundle.id for bundle in selected_bundles],
lowBound=0,
upBound=1,
cat='Binary')
for target in self.solver_run.objective_function.tcc_targets:
problem += lpSum([item.irf(self.solver_run, target.theta)*items[item.id]
for item in self.solver_run.items]) <= target.value, f'min tcc theta ({target.theta}) target value {target.value}'
logging.info(f'Generating Solution for Form {form_number}')
# solve problem
problem.solve()
while current_drift <= Target.max_drift():
drift_percent = current_drift / 100
self.solver_run.objective_function.update_targets_drift(
drift_percent)
# add return items and create as a form
form_items = service_helper.solution_items(problem.variables(), self.solver_run)
# create problem
problem = LpProblem('ata-form-generate', LpMinimize)
# add form to solution
solution.forms.append(Form.create(form_items, self.solver_run, LpStatus[problem.status]))
# objective function
problem += lpSum([
bundle.count * bundles[bundle.id]
for bundle in selected_bundles
] + [
items[item.id]
for item in selected_items
])
# successfull form, increment
f += 1
# Form Constraints
problem += lpSum(
[
bundle.count * bundles[bundle.id]
for bundle in selected_bundles
] + [
1 * items[item.id]
for item in selected_items
]
) == self.solver_run.total_form_items, f'Total bundle form items for form {form_number}'
return solution
# Dynamic constraints.. currently we only support Metadata and Bundles(Cases/Passages)
problem = solver_helper.build_constraints(
self.solver_run, problem, items, bundles, selected_items, selected_bundles)
def stream_to_s3_bucket(self, error = None):
self.file_name = f'{service_helper.key_to_uuid(self.key)}.csv'
solution_file = None
# setup writer buffer and write processed forms to file
buffer = io.StringIO()
# form uniqueness constraints
# for form in solution.forms:
# form_item_options = [
# bundles[bundle.id]
# for bundle in selected_bundles
# ] + [
# items[item.id]
# for item in selected_items
# ]
# problem += len(
# set(form.solver_variables)
# & set(form_item_options)) / float(
# len(
# set(form.solver_variables)
# | set(form_item_options))) * 100 >= 10
if error:
logging.info('Streaming %s error response to s3 bucket - %s', self.file_name, os.environ['S3_PROCESSED_BUCKET'])
solution_file = service_helper.error_to_file(buffer, error)
else:
logging.info('Streaming %s to s3 bucket - %s', self.file_name, os.environ['S3_PROCESSED_BUCKET'])
solution_file = service_helper.solution_to_file(buffer, self.solver_run.total_form_items, self.solution.forms)
logging.info('Creating TIF and TCC Elastic constraints')
# upload generated file to s3 and return result
return aws_helper.file_stream_upload(solution_file, self.file_name, os.environ['S3_PROCESSED_BUCKET'])
# Behold our very own Elastic constraints!
for tif_target in self.solver_run.objective_function.tif_targets:
problem += lpSum([
bundle.tif(self.solver_run.irt_model, tif_target.theta)
* bundles[bundle.id]
for bundle in selected_bundles
] + [
item.iif(self.solver_run, tif_target.theta) *
items[item.id]
for item in selected_items
]) >= tif_target.minimum(
), f'Min TIF theta({tif_target.theta}) at target {tif_target.value} drift at {current_drift}%'
problem += lpSum([
bundle.tif(self.solver_run.irt_model, tif_target.theta)
* bundles[bundle.id]
for bundle in selected_bundles
] + [
item.iif(self.solver_run, tif_target.theta) *
items[item.id]
for item in selected_items
]) <= tif_target.maximum(
), f'Max TIF theta({tif_target.theta}) at target {tif_target.value} drift at {current_drift}%'
for tcc_target in self.solver_run.objective_function.tcc_targets:
problem += lpSum([
bundle.trf(self.solver_run.irt_model, tcc_target.theta)
* bundles[bundle.id]
for bundle in selected_bundles
] + [
item.irf(self.solver_run, tcc_target.theta) *
items[item.id]
for item in selected_items
]) >= tcc_target.minimum(
), f'Min TCC theta({tcc_target.theta}) at target {tcc_target.value} drift at {current_drift}%'
problem += lpSum([
bundle.trf(self.solver_run.irt_model, tcc_target.theta)
* bundles[bundle.id]
for bundle in selected_bundles
] + [
item.irf(self.solver_run, tcc_target.theta) *
items[item.id]
for item in selected_items
]) <= tcc_target.maximum(
), f'Max TCC theta({tcc_target.theta}) at target {tcc_target.value} drift at {current_drift}%'
logging.info(
f'Solving for Form {form_number} with a drift of {current_drift}%'
)
problem.solve()
if LpStatus[problem.status] == 'Infeasible':
logging.info(
f'attempt infeasible for drift of {current_drift}%')
if current_drift >= Target.max_drift(
): # this is the last attempt, so lets finalize the solution
if ApplicationConfigs.local_dev_env:
service_helper.print_problem_variables(problem)
logging.info(
f'No feasible solution found for Form {form_number}!'
)
self.add_form_to_solution(problem, solution)
break
current_drift += Target.max_drift_increment()
else:
if ApplicationConfigs.local_dev_env:
service_helper.print_problem_variables(problem)
logging.info(
f'Optimal solution found with drift of {current_drift}%!'
)
self.add_form_to_solution(problem, solution)
break
logging.info('Solution Generated.')
return solution
def add_form_to_solution(self, problem: LpProblem, solution: Solution):
# add return items and create as a form
form_items, solver_variables = service_helper.solution_items(
problem.variables(), self.solver_run)
form = Form.create(form_items, self.solver_run,
LpStatus[problem.status], solver_variables)
solution.forms.append(form)
logging.info('Form generated and added to solution...')
def stream_to_s3_bucket(self, error=None):
self.file_name = f'{service_helper.key_to_uuid(self.key)}.csv'
solution_file = None
# setup writer buffer and write processed forms to file
buffer = io.StringIO()
if error:
logging.info('Streaming %s error response to s3 bucket - %s',
self.file_name,
ApplicationConfigs.s3_processed_bucket)
solution_file = service_helper.error_to_file(buffer, error)
else:
logging.info('Streaming %s to s3 bucket - %s', self.file_name,
ApplicationConfigs.s3_processed_bucket)
solution_file = service_helper.solution_to_file(
buffer, self.solver_run.total_form_items, self.solution.forms)
# upload generated file to s3 and return result
return aws_helper.file_stream_upload(
solution_file, self.file_name,
ApplicationConfigs.s3_processed_bucket)

View File

@ -0,0 +1,252 @@
# Local Dev Sandbox for the solver
# Useful for testing some concepts and functionality
# and offers a much faster feedback loop than the usual end-to-end process in Local Dev
#
# How to use:
# 1. run `compose exec meazure-solver bash`
# 2. run `python`
# 3. import this file in the python repl by `from services.solver_sandbox import SolverSandbox`
# 4. run any of the methds below e.g. `SolverSandbox.yas_elastic()`
import logging
from pulp import LpProblem, LpVariable, LpInteger, LpMinimize, LpMaximize, LpAffineExpression, LpConstraint, LpStatus, lpSum
from services.loft_service import LoftService
from lib.application_configs import ApplicationConfigs
class SolverSandbox:
def loft_service(body = {}):
if ApplicationConfigs.local_dev_env:
body = {'Records': [{'eventVersion': '2.1', 'eventSource': 'aws:s3', 'awsRegion': 'us-east-1', 'eventTime': '2022-03-17T13:51:22.708Z', 'eventName': 'ObjectCreated:Put', 'userIdentity': {'principalId': 'AIDAJDPLRKLG7UEXAMPLE'}, 'requestParameters': {'sourceIPAddress': '127.0.0.1'}, 'responseElements': {'x-amz-request-id': '25ecd478', 'x-amz-id-2': 'eftixk72aD6Ap51TnqcoF8eFidJG9Z/2'}, 's3': {'s3SchemaVersion': '1.0', 'configurationId': 'testConfigRule', 'bucket': {'name': 'measure-local-solver-ingest', 'ownerIdentity': {'principalId': 'A3NL1KOZZKExample'}, 'arn': 'arn:aws:s3:::measure-local-solver-ingest'}, 'object': {'key': '40f23de0-8827-013a-a353-0242ac120010_solver_run.tar.gz', 'size': 491, 'eTag': '"2b423d91e80d931302192e781b6bd47c"', 'versionId': None, 'sequencer': '0055AED6DCD90281E5'}}}]}
# CPNRE item bank with metadata and cases
# body = {'Records': [{'eventVersion': '2.1', 'eventSource': 'aws:s3', 'awsRegion': 'us-east-1', 'eventTime': '2022-03-23T18:49:42.979Z', 'eventName': 'ObjectCreated:Put', 'userIdentity': {'principalId': 'AIDAJDPLRKLG7UEXAMPLE'}, 'requestParameters': {'sourceIPAddress': '127.0.0.1'}, 'responseElements': {'x-amz-request-id': 'c4efd257', 'x-amz-id-2': 'eftixk72aD6Ap51TnqcoF8eFidJG9Z/2'}, 's3': {'s3SchemaVersion': '1.0', 'configurationId': 'testConfigRule', 'bucket': {'name': 'measure-local-solver-ingest', 'ownerIdentity': {'principalId': 'A3NL1KOZZKExample'}, 'arn': 'arn:aws:s3:::measure-local-solver-ingest'}, 'object': {'key': 'e8f38480-8d07-013a-5ee6-0242ac120010_solver_run.tar.gz', 'size': 12716, 'eTag': '"94189c36aef04dde3babb462442c3af3"', 'versionId': None, 'sequencer': '0055AED6DCD90281E5'}}}]}
# LOFT item bank with metadata and cases
body = {'Records': [{'eventVersion': '2.1', 'eventSource': 'aws:s3', 'awsRegion': 'us-east-1', 'eventTime': '2022-03-22T19:36:53.568Z', 'eventName': 'ObjectCreated:Put', 'userIdentity': {'principalId': 'AIDAJDPLRKLG7UEXAMPLE'}, 'requestParameters': {'sourceIPAddress': '127.0.0.1'}, 'responseElements': {'x-amz-request-id': '61f320d0', 'x-amz-id-2': 'eftixk72aD6Ap51TnqcoF8eFidJG9Z/2'}, 's3': {'s3SchemaVersion': '1.0', 'configurationId': 'testConfigRule', 'bucket': {'name': 'measure-local-solver-ingest', 'ownerIdentity': {'principalId': 'A3NL1KOZZKExample'}, 'arn': 'arn:aws:s3:::measure-local-solver-ingest'}, 'object': {'key': '5971f500-8c45-013a-5d13-0242ac120010_solver_run.tar.gz', 'size': 619, 'eTag': '"a3cbba098e9f6a445cba6014e47ccaf9"', 'versionId': None, 'sequencer': '0055AED6DCD90281E5'}}}]}
# Latest CPNRE Item Bank with metadata and cases
body = {'Records': [{'eventVersion': '2.1', 'eventSource': 'aws:s3', 'awsRegion': 'us-east-1', 'eventTime': '2022-03-24T15:47:54.652Z', 'eventName': 'ObjectCreated:Put', 'userIdentity': {'principalId': 'AIDAJDPLRKLG7UEXAMPLE'}, 'requestParameters': {'sourceIPAddress': '127.0.0.1'}, 'responseElements': {'x-amz-request-id': '1969b1ed', 'x-amz-id-2': 'eftixk72aD6Ap51TnqcoF8eFidJG9Z/2'}, 's3': {'s3SchemaVersion': '1.0', 'configurationId': 'testConfigRule', 'bucket': {'name': 'measure-local-solver-ingest', 'ownerIdentity': {'principalId': 'A3NL1KOZZKExample'}, 'arn': 'arn:aws:s3:::measure-local-solver-ingest'}, 'object': {'key': 'ab40ca20-8db7-013a-a88f-0242ac120013_solver_run.tar.gz', 'size': 24111, 'eTag': '"718a1a17b5dd5219b8e179bfd1ddf1ca"', 'versionId': None, 'sequencer': '0055AED6DCD90281E5'}}}]}
# Latest LOFT Item Bank with metadata and cases with target variance
body = {'Records': [{'eventVersion': '2.1', 'eventSource': 'aws:s3', 'awsRegion': 'us-east-1', 'eventTime': '2022-03-25T18:03:18.829Z', 'eventName': 'ObjectCreated:Put', 'userIdentity': {'principalId': 'AIDAJDPLRKLG7UEXAMPLE'}, 'requestParameters': {'sourceIPAddress': '127.0.0.1'}, 'responseElements': {'x-amz-request-id': '204c718f', 'x-amz-id-2': 'eftixk72aD6Ap51TnqcoF8eFidJG9Z/2'}, 's3': {'s3SchemaVersion': '1.0', 'configurationId': 'testConfigRule', 'bucket': {'name': 'measure-local-solver-ingest', 'ownerIdentity': {'principalId': 'A3NL1KOZZKExample'}, 'arn': 'arn:aws:s3:::measure-local-solver-ingest'}, 'object': {'key': 'beb35dc0-8e93-013a-5807-0242ac120013_solver_run.tar.gz', 'size': 24112, 'eTag': '"a5a4aad0eb8c9d9af2aad9684437022a"', 'versionId': None, 'sequencer': '0055AED6DCD90281E5'}}}]}
LoftService(body).process()
def yosh_loop():
Items = [1,2,3,4,5]
tif = {
1: 0.2,
2: 0.5,
3: 0.3,
4: 0.8,
5: 0.1
}
iif = {
1: 0.09,
2: 0.2,
3: 0.113,
4: 0.3,
5: 0.1
}
drift = 0.0
drift_limit = 0.2
iif_target = 0.5
tif_target = 0.9
item_vars = LpVariable.dicts("Item", Items, cat="Binary")
while drift <= drift_limit:
prob = LpProblem("tif_tcc_test", LpMinimize)
prob += lpSum([(tif[i] + iif[i]) * item_vars[i] for i in Items]), "TifTccSum"
prob += lpSum([item_vars[i] for i in Items]) == 3, "TotalItems"
prob += lpSum([tif[i] * item_vars[i] for i in Items]) >= tif_target - (tif_target * drift), 'TifMin'
prob += lpSum([tif[i] * item_vars[i] for i in Items]) <= tif_target + (tif_target * drift), 'TifMax'
prob += lpSum([iif[i] * item_vars[i] for i in Items]) >= iif_target - (iif_target * drift), 'TccMin'
prob += lpSum([iif[i] * item_vars[i] for i in Items]) <= iif_target + (iif_target * drift), 'TccMax'
prob.solve()
print(prob)
if LpStatus[prob.status] == "Infeasible":
print('attempt infeasible')
for v in prob.variables():
print(v.name, "=", v.varValue)
drift += 0.02
else:
print(f"solution found with drift of {drift}!")
for v in prob.variables():
print(v.name, "=", v.varValue)
break
def yas_elastic(tif_targets, tcc_targets): # [50, 55, 46], [60, 40, 50]
Items = [1,2,3,4,5,6,7,8,9,10]
iif = {
1: 5,
2: 5,
3: 5,
4: 10,
5: 10,
6: 10,
7: 15,
8: 20,
9: 20,
10: 20
}
# ---
irf = {
1: 5,
2: 5,
3: 5,
4: 10,
5: 10,
6: 10,
7: 15,
8: 20,
9: 20,
10: 20
}
items = LpVariable.dicts('Item', Items, cat='Binary')
drift = 0
max_drift = 25# 25% elasticity
while drift <= max_drift:
drift_percent = drift / 100
problem = LpProblem('TIF_TCC', LpMinimize)
# objective function
problem += lpSum([items[i] for i in Items])
# Constraint 1
problem += lpSum([items[i] for i in Items]) == 5, 'TotalItems'
# Our own "Elastic Constraints"
for tif_target in tif_targets:
print(f"Calculating TIF target of {tif_target} with drift of {drift}%")
problem += lpSum(
[iif[i] * items[i] for i in Items]
) >= tif_target - (tif_target * drift_percent)
problem += lpSum(
[iif[i] * items[i] for i in Items]
) <= tif_target + (tif_target * drift_percent)
for tcc_target in tcc_targets:
print(f"Calculating TIF target of {tcc_target} with drift of {drift}%")
problem += lpSum(
[irf[i] * items[i] for i in Items]
) >= tcc_target - (tcc_target * drift_percent)
problem += lpSum(
[irf[i] * items[i] for i in Items]
) <= tcc_target + (tcc_target * drift_percent)
problem.solve()
if LpStatus[problem.status] == 'Infeasible':
print(f"attempt infeasible for drift of {drift}")
for v in problem.variables(): print(v.name, "=", v.varValue)
# if drift == max_drift: breakpoint();
print(problem.objective.value())
print(problem.constraints)
print(problem.objective)
drift += 1
else:
print(f"solution found with drift of {drift}!")
for v in problem.variables(): print(v.name, "=", v.varValue);
print(problem.objective.value())
print(problem.constraints)
print(problem.objective)
break
# Implementation of the Whiskas Cat problem, with elastic constraints
# https://www.coin-or.org/PuLP/CaseStudies/a_blending_problem.html
# https://stackoverflow.com/questions/27278691/how-can-an-elastic-subproblem-in-pulp-be-used-as-a-constraint?noredirect=1&lq=1
def whiskas():
# Creates a list of the Ingredients
Ingredients = ['CHICKEN', 'BEEF', 'MUTTON', 'RICE', 'WHEAT', 'GEL']
# A dictionary of the costs of each of the Ingredients is created
costs = {'CHICKEN': 0.013,
'BEEF': 0.008,
'MUTTON': 0.010,
'RICE': 0.002,
'WHEAT': 0.005,
'GEL': 0.001}
# A dictionary of the protein percent in each of the Ingredients is created
proteinPercent = {'CHICKEN': 0.100,
'BEEF': 0.200,
'MUTTON': 0.150,
'RICE': 0.000,
'WHEAT': 0.040,
'GEL': 0.000}
# A dictionary of the fat percent in each of the Ingredients is created
fatPercent = {'CHICKEN': 0.080,
'BEEF': 0.100,
'MUTTON': 0.110,
'RICE': 0.010,
'WHEAT': 0.010,
'GEL': 0.000}
# A dictionary of the fibre percent in each of the Ingredients is created
fibrePercent = {'CHICKEN': 0.001,
'BEEF': 0.005,
'MUTTON': 0.003,
'RICE': 0.100,
'WHEAT': 0.150,
'GEL': 0.000}
# A dictionary of the salt percent in each of the Ingredients is created
saltPercent = {'CHICKEN': 0.002,
'BEEF': 0.005,
'MUTTON': 0.007,
'RICE': 0.002,
'WHEAT': 0.008,
'GEL': 0.000}
logging.info('Running Test...')
# create problem
problem = LpProblem("The Whiskas Problem", LpMinimize)
# A dictionary called 'ingredient_vars' is created to contain the referenced Variables
ingredient_vars = LpVariable.dicts("Ingr", Ingredients, 0)
# set objective
problem += lpSum([costs[i]*ingredient_vars[i] for i in Ingredients]), "Total Cost of Ingredients per can"
# The five constraints are added to 'prob'
problem += lpSum([ingredient_vars[i] for i in Ingredients]) == 100, "PercentagesSum"
problem += lpSum([proteinPercent[i] * ingredient_vars[i] for i in Ingredients]) >= 8.0, "ProteinRequirement"
problem += lpSum([fatPercent[i] * ingredient_vars[i] for i in Ingredients]) >= 6.0, "FatRequirement"
problem += lpSum([fibrePercent[i] * ingredient_vars[i] for i in Ingredients]) <= 2.0, "FibreRequirement"
problem += lpSum([saltPercent[i] * ingredient_vars[i] for i in Ingredients]) <= 0.4, "SaltRequirement"
# ELASTICIZE
# c6_LHS_A = LpAffineExpression([ingredient_vars])
c6_LHS = LpAffineExpression([(ingredient_vars['GEL'],1), (ingredient_vars['BEEF'],1)])
c6= LpConstraint(e=c6_LHS, sense=-1, name='GelBeefTotal', rhs=30)
c6_elastic = c6.makeElasticSubProblem(penalty = 100, proportionFreeBound = .10)
problem.extend(c6_elastic)
print(problem)
# solve problem
problem.solve()
# The status of the solution is printed to the screen
print("Status:", LpStatus[problem.status])
# Each of the variables is printed with it's resolved optimum value
for v in problem.variables():
print(v.name, "=", v.varValue)
# The optimised objective function value is printed to the screen
print("Total Cost of Ingredients per can = ", problem.objective.value())