combination based bundle solving
This commit is contained in:
parent
744abbb7b8
commit
8ce5e6e540
@ -1,10 +1,16 @@
|
||||
from pulp import lpSum
|
||||
from itertools import combinations
|
||||
from pulp import lpSum, LpProblem
|
||||
from random import randint, sample
|
||||
|
||||
from models.bundle import Bundle
|
||||
from models.item import Item
|
||||
from models.solver_run import SolverRun
|
||||
|
||||
import logging
|
||||
|
||||
from lib.errors.item_generation_error import ItemGenerationError
|
||||
|
||||
def build_constraints(solver_run, problem, items, bundles):
|
||||
def build_constraints(solver_run: SolverRun, problem: LpProblem, items: list[Item], bundles: list[Bundle] or None) -> LpProblem:
|
||||
try:
|
||||
total_form_items = solver_run.total_form_items
|
||||
constraints = solver_run.constraints
|
||||
@ -24,33 +30,47 @@ def build_constraints(solver_run, problem, items, bundles):
|
||||
problem += lpSum([con[item.id]
|
||||
* items[item.id]
|
||||
for item in solver_run.items]) <= round(total_form_items * (max / 100)), f'{attribute.id} - {attribute.value} - max'
|
||||
elif attribute.type == 'bundle':
|
||||
# TODO: account for many different bundle types, since the id condition in L33 could yield duplicates
|
||||
if solver_run.bundles != None:
|
||||
total_bundles = randint(constraint.minimum, constraint.maximum)
|
||||
selected_bundles = sample(solver_run.bundles, total_bundles)
|
||||
total_bundle_items = 0
|
||||
|
||||
for bundle in selected_bundles:
|
||||
con = dict(zip([item.id for item in solver_run.items],
|
||||
[(getattr(item, bundle.type, False) == bundle.id)
|
||||
for item in solver_run.items]))
|
||||
problem += lpSum([con[item.id]
|
||||
* items[item.id]
|
||||
for item in solver_run.items]) == bundle.count, f'Bundle constraint for {bundle.type} ({bundle.id})'
|
||||
total_bundle_items += bundle.count
|
||||
|
||||
# make sure all other items added to the form
|
||||
# are not a part of any bundle
|
||||
# currently only supports single bundle constraints, will need refactoring for multiple bundle constraints
|
||||
elif attribute.type == 'bundle' and bundles:
|
||||
total_bundle_items = sum(bundle.count for bundle in bundles)
|
||||
|
||||
for bundle in bundles:
|
||||
con = dict(zip([item.id for item in solver_run.items],
|
||||
[(getattr(item, attribute.id, None) == None)
|
||||
for item in solver_run.items]))
|
||||
[(getattr(item, bundle.type, False) == bundle.id)
|
||||
for item in solver_run.items]))
|
||||
problem += lpSum([con[item.id]
|
||||
* items[item.id]
|
||||
for item in solver_run.items]) == solver_run.total_form_items - total_bundle_items, f'Remaining items are not of a bundle type'
|
||||
for item in solver_run.items]) == bundle.count, f'Bundle constraint for {bundle.type} ({bundle.id})'
|
||||
|
||||
# make sure all other items added to the form
|
||||
# are not a part of any bundle
|
||||
# currently only supports single bundle constraints, will need refactoring for multiple bundle constraints
|
||||
con = dict(zip([item.id for item in solver_run.items],
|
||||
[(getattr(item, attribute.id, None) == None)
|
||||
for item in solver_run.items]))
|
||||
problem += lpSum([con[item.id]
|
||||
* items[item.id]
|
||||
for item in solver_run.items]) == solver_run.total_form_items - total_bundle_items, f'Remaining items are not of a bundle type'
|
||||
|
||||
return problem
|
||||
except ValueError as error:
|
||||
logging.error(error)
|
||||
raise ItemGenerationError("Bundle min and/or max larger than bundle amount provided", error.args[0])
|
||||
|
||||
def valid_bundle_combinations(total_form_items: int, total_bundles: int, min_bundles: int, bundles: list[Bundle], selected_bundle_combinations: list[list[Bundle]] = []) -> list[list[Bundle]]:
|
||||
if total_bundles < min_bundles:
|
||||
return selected_bundle_combinations
|
||||
else:
|
||||
# generate all bundle combinations
|
||||
bundle_combinations = [list(combination) for combination in combinations(bundles, total_bundles)]
|
||||
|
||||
# iterate through all the combinations
|
||||
# if the combination item count is less than or equal to
|
||||
# the total items on a form, add it to selected bundles
|
||||
for bundle_combination in bundle_combinations:
|
||||
total_bundle_items = sum(bundle.count for bundle in bundle_combination)
|
||||
if total_bundle_items <= total_form_items:
|
||||
selected_bundle_combinations.append(bundle_combination)
|
||||
|
||||
# recurse to continue generating combinations
|
||||
# all the way to the minimum amount of bundles allowed
|
||||
return valid_bundle_combinations(total_form_items, total_bundles - 1, min_bundles, bundles, selected_bundle_combinations)
|
@ -1,6 +1,10 @@
|
||||
from pydantic import BaseModel
|
||||
from typing import List
|
||||
|
||||
from models.item import Item
|
||||
|
||||
class Bundle(BaseModel):
|
||||
id: int
|
||||
count: int
|
||||
items: List[Item]
|
||||
type: str
|
||||
|
@ -1,3 +1,5 @@
|
||||
import logging
|
||||
|
||||
from pydantic import BaseModel
|
||||
from typing import List, Optional
|
||||
|
||||
@ -20,17 +22,19 @@ class SolverRun(BaseModel):
|
||||
advanced_options: Optional[AdvancedOptions]
|
||||
engine: str
|
||||
|
||||
def get_item(self, item_id):
|
||||
def get_item(self, item_id: int) -> Item or bool:
|
||||
for item in self.items:
|
||||
if str(item.id) == item_id:
|
||||
return item
|
||||
return False
|
||||
|
||||
def remove_items(self, items):
|
||||
def remove_items(self, items: list[Item]) -> bool:
|
||||
self.items = [item for item in self.items if item not in items]
|
||||
return True
|
||||
|
||||
def generate_bundles(self):
|
||||
logging.info('Generating Bundles...')
|
||||
|
||||
bundle_constraints = (constraint.reference_attribute for constraint in self.constraints if constraint.reference_attribute.type == 'bundle')
|
||||
|
||||
for bundle_constraint in bundle_constraints:
|
||||
@ -53,16 +57,24 @@ class SolverRun(BaseModel):
|
||||
self.bundles.append(Bundle(
|
||||
id=attribute_id,
|
||||
count=1,
|
||||
items=[item],
|
||||
type=type_attribute
|
||||
))
|
||||
else:
|
||||
self.bundles[bundle_index].count += 1
|
||||
self.bundles[bundle_index].items.append(item)
|
||||
else:
|
||||
self.bundles = [Bundle(
|
||||
id=attribute_id,
|
||||
count=1,
|
||||
items=[item],
|
||||
type=type_attribute
|
||||
)]
|
||||
|
||||
def get_constraint(self, name):
|
||||
def get_constraint(self, name: str) -> Constraint or None:
|
||||
return next((constraint for constraint in self.constraints if constraint.reference_attribute.id == name), None)
|
||||
|
||||
# temp function until we build out bundles to more than just for cases
|
||||
# for now it treats "bundle" attributes as a single unique constraint
|
||||
def get_constraint_by_type(self, type: str) -> Constraint or None:
|
||||
return next((constraint for constraint in self.constraints if constraint.reference_attribute.type == type), None)
|
@ -9,6 +9,7 @@ from models.solver_run import SolverRun
|
||||
from models.solution import Solution
|
||||
from models.form import Form
|
||||
from models.item import Item
|
||||
from models.bundle import Bundle
|
||||
|
||||
from services.base import Base
|
||||
|
||||
@ -25,7 +26,7 @@ class LoftService(Base):
|
||||
logging.error(error)
|
||||
self.result = self.stream_to_s3_bucket(ItemGenerationError("Provided params causing error in calculation results"))
|
||||
|
||||
def create_solver_run_from_attributes(self):
|
||||
def create_solver_run_from_attributes(self) -> SolverRun:
|
||||
logging.info('Retrieving attributes from message...')
|
||||
# get s3 object
|
||||
self.key = aws_helper.get_key_from_message(self.source)
|
||||
@ -52,67 +53,95 @@ class LoftService(Base):
|
||||
|
||||
return solver_run
|
||||
|
||||
def generate_solution(self):
|
||||
# unsolved solution
|
||||
solution = Solution(
|
||||
response_id=random.randint(100, 5000),
|
||||
forms=[]
|
||||
)
|
||||
|
||||
def generate_solution(self) -> Solution:
|
||||
logging.info('Generating Solution...')
|
||||
|
||||
# counter for number of forms
|
||||
f = 0
|
||||
|
||||
# setup vars
|
||||
items = LpVariable.dicts(
|
||||
"Item", [item.id for item in self.solver_run.items], lowBound=1, upBound=1, cat='Binary')
|
||||
|
||||
# check if problem request has bundles
|
||||
bundle_constraint = self.solver_run.get_constraint_by_type('bundle')
|
||||
|
||||
# iterate for number of forms that require creation
|
||||
# currently creates distinc forms with no item overlap
|
||||
while f < self.solver_run.total_forms:
|
||||
# setup vars
|
||||
items = LpVariable.dicts(
|
||||
"Item", [item.id for item in self.solver_run.items], lowBound=1, upBound=1, cat='Binary')
|
||||
bundles = LpVariable.dicts(
|
||||
"Bundle", [bundle.id for bundle in self.solver_run.bundles], lowBound=1, upBound=1, cat='Binary')
|
||||
# unsolved solution
|
||||
solution = Solution(
|
||||
response_id=random.randint(100, 5000),
|
||||
forms=[]
|
||||
)
|
||||
|
||||
# initiate problem
|
||||
problem = None
|
||||
count = 0
|
||||
if bundle_constraint:
|
||||
# generate valid bundle combinations
|
||||
bundle_combinations = solver_helper.valid_bundle_combinations(
|
||||
self.solver_run.total_form_items,
|
||||
int(bundle_constraint.maximum),
|
||||
int(bundle_constraint.minimum),
|
||||
self.solver_run.bundles)
|
||||
|
||||
problem_objection_functions = []
|
||||
|
||||
# create problem
|
||||
problem = LpProblem("ata-form-generate", LpMinimize)
|
||||
|
||||
# dummy objective function, because it just makes things easier™
|
||||
problem += lpSum([items[item.id]
|
||||
for item in self.solver_run.items])
|
||||
|
||||
# constraints
|
||||
problem += lpSum([items[item.id]
|
||||
for item in self.solver_run.items]) == self.solver_run.total_form_items, 'Total form items'
|
||||
|
||||
# dynamic constraints
|
||||
problem = solver_helper.build_constraints(self.solver_run, problem, items, bundles)
|
||||
|
||||
# multi-objective constraints
|
||||
for target in self.solver_run.objective_function.tif_targets:
|
||||
problem += lpSum([item.iif(self.solver_run, target.theta)*items[item.id]
|
||||
for item in self.solver_run.items]) >= target.value - 8, f'max tif theta ({target.theta}) target value {target.value}'
|
||||
problem += lpSum([item.iif(self.solver_run, target.theta)*items[item.id]
|
||||
for item in self.solver_run.items]) <= target.value + 8, f'min tif theta ({target.theta}) target value {target.value}'
|
||||
|
||||
for target in self.solver_run.objective_function.tcc_targets:
|
||||
problem += lpSum([item.irf(self.solver_run, target.theta)*items[item.id]
|
||||
for item in self.solver_run.items]) >= target.value - 20, f'max tcc theta ({target.theta}) target value {target.value}'
|
||||
problem += lpSum([item.irf(self.solver_run, target.theta)*items[item.id]
|
||||
for item in self.solver_run.items]) <= target.value + 20, f'min tcc theta ({target.theta}) target value {target.value}'
|
||||
|
||||
# solve problem
|
||||
problem.solve()
|
||||
# scramble bundle_combinations to ensure distinctiveness for each form generated
|
||||
random.shuffle(bundle_combinations)
|
||||
|
||||
for bundles in bundle_combinations:
|
||||
problem = self.solve_problem(items, bundles)
|
||||
|
||||
# if optimal solution found, break loop
|
||||
if LpStatus[problem.status] == 'Optimal':
|
||||
break
|
||||
else: # no bundles
|
||||
problem = self.solve_problem(items)
|
||||
|
||||
# successfull form, increment and exit out of loop
|
||||
f += 1
|
||||
|
||||
# add return items and create as a form
|
||||
form_items = service_helper.solution_items(problem.variables(), self.solver_run)
|
||||
|
||||
# add form to solution
|
||||
solution.forms.append(Form.create(form_items, self.solver_run, LpStatus[problem.status]))
|
||||
|
||||
# successfull form, increment
|
||||
f += 1
|
||||
return solution
|
||||
|
||||
def solve_problem(self, items: list[Item], bundles: list[Bundle] or None = None) -> LpProblem:
|
||||
# create problem
|
||||
problem = LpProblem("ata-form-generate", LpMinimize)
|
||||
|
||||
# dummy objective function, because it just makes things easier™
|
||||
problem += lpSum([items[item.id]
|
||||
for item in self.solver_run.items])
|
||||
|
||||
# constraints
|
||||
problem += lpSum([items[item.id]
|
||||
for item in self.solver_run.items]) == self.solver_run.total_form_items, 'Total form items'
|
||||
|
||||
# dynamic constraints
|
||||
problem = solver_helper.build_constraints(self.solver_run, problem, items, bundles)
|
||||
|
||||
# multi-objective constraints
|
||||
for target in self.solver_run.objective_function.tif_targets:
|
||||
problem += lpSum([item.iif(self.solver_run, target.theta)*items[item.id]
|
||||
for item in self.solver_run.items]) >= target.value - 8, f'max tif theta ({target.theta}) target value {target.value}'
|
||||
problem += lpSum([item.iif(self.solver_run, target.theta)*items[item.id]
|
||||
for item in self.solver_run.items]) <= target.value + 8, f'min tif theta ({target.theta}) target value {target.value}'
|
||||
|
||||
for target in self.solver_run.objective_function.tcc_targets:
|
||||
problem += lpSum([item.irf(self.solver_run, target.theta)*items[item.id]
|
||||
for item in self.solver_run.items]) >= target.value - 20, f'max tcc theta ({target.theta}) target value {target.value}'
|
||||
problem += lpSum([item.irf(self.solver_run, target.theta)*items[item.id]
|
||||
for item in self.solver_run.items]) <= target.value + 20, f'min tcc theta ({target.theta}) target value {target.value}'
|
||||
|
||||
# solve problem
|
||||
problem.solve()
|
||||
|
||||
return problem
|
||||
|
||||
return solution
|
||||
|
||||
def stream_to_s3_bucket(self, error = None):
|
||||
self.file_name = f'{service_helper.key_to_uuid(self.key)}.csv'
|
||||
|
Loading…
x
Reference in New Issue
Block a user