trial for variability

This commit is contained in:
Joshua Burman 2022-03-25 13:58:31 -04:00
parent 1f00e1e1bc
commit 11a5112812
2 changed files with 147 additions and 79 deletions

View File

@ -2,6 +2,7 @@ from pydantic import BaseModel
from typing import List, Literal, Optional
import logging
import random
from models.item import Item
from models.constraint import Constraint
@ -89,7 +90,7 @@ class SolverRun(BaseModel):
# temporary compensator for bundle item limits, since we shouldn't be using cases with less than 3 items
# ideally this should be in the bundles model as a new attribute to handle "constraints of constraints"
logging.info('Removing bundles with items < 3')
for k,v in enumerate(self.bundles):
for k, v in enumerate(self.bundles):
bundle = self.bundles[k]
if bundle.count < 3: del self.bundles[k]
@ -103,4 +104,26 @@ class SolverRun(BaseModel):
# since the only bundles are based on passage id currently
# in the future when we have more than just passage based bundles
# we'll need to develop a more sophisticated way of handling this concern
return [item for item in self.items if item.passage_id == None]
bundle_constraints = (
constraint.reference_attribute for constraint in self.constraints
if constraint.reference_attribute.type == 'bundle')
if len(bundle_constraints) > 0:
return [item for item in self.items if item.passage_id == None]
else:
return self.items
def select_items_by_percent(self, percent) -> list[Item]:
items = self.unbundled_items()
total_items = len(items)
selected_items_amount = round(total_items - (total_items *
(percent / 100)))
return random.sample(items, selected_items_amount)
def select_bundles_by_percent(self, percent) -> list[Bundle]:
total_bundles = len(self.bundles)
selected_bundles_amount = round(total_bundles - (total_bundles *
(percent / 100)))
return random.sample(self.bundles, selected_bundles_amount)

View File

@ -14,6 +14,7 @@ from models.target import Target
from services.base import Base
class LoftService(Base):
def process(self):
@ -53,7 +54,8 @@ class LoftService(Base):
items_csv_reader = csv_helper.file_stream_reader(items_csv)
# add items to solver run
solver_run.items = service_helper.csv_to_item(items_csv_reader, solver_run)
solver_run.items = service_helper.csv_to_item(items_csv_reader,
solver_run)
logging.info('Processed Attributes...')
@ -62,115 +64,151 @@ class LoftService(Base):
def generate_solution(self) -> Solution:
logging.info('Generating Solution...')
solution = Solution(response_id=random.randint(100, 5000), forms=[]) # unsolved solution
# setup common Solver variables
items = LpVariable.dicts("Item", [item.id for item in self.solver_run.unbundled_items()], lowBound=0, upBound=1, cat='Binary')
bundles = LpVariable.dicts("Bundle", [bundle.id for bundle in self.solver_run.bundles], lowBound=0, upBound=1, cat='Binary')
solution = Solution(response_id=random.randint(100, 5000),
forms=[]) # unsolved solution
# iterate for number of forms that require creation
for form_count in range(self.solver_run.total_forms):
form_number = form_count + 1
current_drift = 0 # FF Tokyo Drift
form_number = form_count + 1
current_drift = 0 # FF Tokyo Drift
selected_items = []
selected_bundles = []
if form_count == 1:
selected_items = self.solver_run.unbundled_items()
selected_bundles = self.solver_run.bundles
else:
selected_items = self.solver_run.select_items_by_percent(30)
selected_bundles = self.solver_run.select_bundles_by_percent(
30)
# setup common Solver variables
items = LpVariable.dicts("Item",
[item.id for item in selected_items],
lowBound=0,
upBound=1,
cat='Binary')
bundles = LpVariable.dicts(
"Bundle", [bundle.id for bundle in selected_bundles],
lowBound=0,
upBound=1,
cat='Binary')
logging.info(f'Generating Solution for Form {form_number}')
while current_drift <= Target.max_drift():
drift_percent = current_drift / 100
self.solver_run.objective_function.update_targets_drift(drift_percent)
self.solver_run.objective_function.update_targets_drift(
drift_percent)
# create problem
problem = LpProblem('ata-form-generate', LpMinimize)
# objective function
problem += lpSum(
[
bundle.count * bundles[bundle.id] for bundle in self.solver_run.bundles
] +
[
items[item.id] for item in self.solver_run.unbundled_items()
]
)
problem += lpSum([
bundle.count * bundles[bundle.id]
for bundle in self.solver_run.bundles
] + [
items[item.id]
for item in self.solver_run.unbundled_items()
])
# Form Constraints
problem += lpSum(
[
bundle.count * bundles[bundle.id] for bundle in self.solver_run.bundles
] +
[
1 * items[item.id] for item in self.solver_run.unbundled_items()
bundle.count * bundles[bundle.id]
for bundle in self.solver_run.bundles
] + [
1 * items[item.id]
for item in self.solver_run.unbundled_items()
]
) == self.solver_run.total_form_items, f'Total bundle form items for form {form_number}'
# Dynamic constraints.. currently we only support Metadata and Bundles(Cases/Passages)
problem = solver_helper.build_constraints(self.solver_run, problem, items, bundles)
problem = solver_helper.build_constraints(
self.solver_run, problem, items, bundles)
# form uniqueness constraints
for form in solution.forms:
form_item_options = [
bundles[bundle.id] for bundle in self.solver_run.bundles
bundles[bundle.id]
for bundle in self.solver_run.bundles
] + [
items[item.id] for item in self.solver_run.unbundled_items()
items[item.id]
for item in self.solver_run.unbundled_items()
]
problem += len(set(form.solver_variables)&set(form_item_options)) / float(len(set(form.solver_variables) | set(form_item_options))) * 100 >= 10
problem += len(
set(form.solver_variables)
& set(form_item_options)) / float(
len(
set(form.solver_variables)
| set(form_item_options))) * 100 >= 10
logging.info('Creating TIF and TCC Elastic constraints')
# Behold our very own Elastic constraints!
for tif_target in self.solver_run.objective_function.tif_targets:
problem += lpSum(
[
bundle.tif(self.solver_run.irt_model, tif_target.theta) * bundles[bundle.id]
for bundle in self.solver_run.bundles
] +
[
item.iif(self.solver_run, tif_target.theta) * items[item.id]
for item in self.solver_run.unbundled_items()
]
) >= tif_target.minimum(), f'Min TIF theta({tif_target.theta}) at target {tif_target.value} drift at {current_drift}%'
problem += lpSum(
[
bundle.tif(self.solver_run.irt_model, tif_target.theta) * bundles[bundle.id]
for bundle in self.solver_run.bundles
] +
[
item.iif(self.solver_run, tif_target.theta) * items[item.id]
for item in self.solver_run.unbundled_items()
]
) <= tif_target.maximum(), f'Max TIF theta({tif_target.theta}) at target {tif_target.value} drift at {current_drift}%'
problem += lpSum([
bundle.tif(self.solver_run.irt_model, tif_target.theta)
* bundles[bundle.id]
for bundle in self.solver_run.bundles
] + [
item.iif(self.solver_run, tif_target.theta) *
items[item.id]
for item in self.solver_run.unbundled_items()
]) >= tif_target.minimum(
), f'Min TIF theta({tif_target.theta}) at target {tif_target.value} drift at {current_drift}%'
problem += lpSum([
bundle.tif(self.solver_run.irt_model, tif_target.theta)
* bundles[bundle.id]
for bundle in self.solver_run.bundles
] + [
item.iif(self.solver_run, tif_target.theta) *
items[item.id]
for item in self.solver_run.unbundled_items()
]) <= tif_target.maximum(
), f'Max TIF theta({tif_target.theta}) at target {tif_target.value} drift at {current_drift}%'
for tcc_target in self.solver_run.objective_function.tcc_targets:
problem += lpSum(
[
bundle.trf(self.solver_run.irt_model, tcc_target.theta) * bundles[bundle.id]
for bundle in self.solver_run.bundles
] +
[
item.irf(self.solver_run, tcc_target.theta) * items[item.id]
for item in self.solver_run.unbundled_items()
]
) >= tcc_target.minimum(), f'Min TCC theta({tcc_target.theta}) at target {tcc_target.value} drift at {current_drift}%'
problem += lpSum(
[
bundle.trf(self.solver_run.irt_model, tcc_target.theta) * bundles[bundle.id]
for bundle in self.solver_run.bundles
] +
[
item.irf(self.solver_run, tcc_target.theta) * items[item.id]
for item in self.solver_run.unbundled_items()
]
) <= tcc_target.maximum(), f'Max TCC theta({tcc_target.theta}) at target {tcc_target.value} drift at {current_drift}%'
problem += lpSum([
bundle.trf(self.solver_run.irt_model, tcc_target.theta)
* bundles[bundle.id]
for bundle in self.solver_run.bundles
] + [
item.irf(self.solver_run, tcc_target.theta) *
items[item.id]
for item in self.solver_run.unbundled_items()
]) >= tcc_target.minimum(
), f'Min TCC theta({tcc_target.theta}) at target {tcc_target.value} drift at {current_drift}%'
problem += lpSum([
bundle.trf(self.solver_run.irt_model, tcc_target.theta)
* bundles[bundle.id]
for bundle in self.solver_run.bundles
] + [
item.irf(self.solver_run, tcc_target.theta) *
items[item.id]
for item in self.solver_run.unbundled_items()
]) <= tcc_target.maximum(
), f'Max TCC theta({tcc_target.theta}) at target {tcc_target.value} drift at {current_drift}%'
logging.info(f'Solving for Form {form_number} with a drift of {current_drift}%')
logging.info(
f'Solving for Form {form_number} with a drift of {current_drift}%'
)
problem.solve()
if LpStatus[problem.status] == 'Infeasible':
logging.info(f'attempt infeasible for drift of {current_drift}%')
logging.info(
f'attempt infeasible for drift of {current_drift}%')
if current_drift >= Target.max_drift(): # this is the last attempt, so lets finalize the solution
if ApplicationConfigs.local_dev_env: service_helper.print_problem_variables(problem);
if current_drift >= Target.max_drift(
): # this is the last attempt, so lets finalize the solution
if ApplicationConfigs.local_dev_env:
service_helper.print_problem_variables(problem)
logging.info(f'No feasible solution found for Form {form_number}!')
logging.info(
f'No feasible solution found for Form {form_number}!'
)
self.add_form_to_solution(problem, solution)
@ -178,9 +216,12 @@ class LoftService(Base):
current_drift += Target.max_drift_increment()
else:
if ApplicationConfigs.local_dev_env: service_helper.print_problem_variables(problem);
if ApplicationConfigs.local_dev_env:
service_helper.print_problem_variables(problem)
logging.info(f'Optimal solution found with drift of {current_drift}%!')
logging.info(
f'Optimal solution found with drift of {current_drift}%!'
)
self.add_form_to_solution(problem, solution)
@ -192,8 +233,10 @@ class LoftService(Base):
def add_form_to_solution(self, problem: LpProblem, solution: Solution):
# add return items and create as a form
form_items, solver_variables = service_helper.solution_items(problem.variables(), self.solver_run)
form = Form.create(form_items, self.solver_run, LpStatus[problem.status], solver_variables)
form_items, solver_variables = service_helper.solution_items(
problem.variables(), self.solver_run)
form = Form.create(form_items, self.solver_run,
LpStatus[problem.status], solver_variables)
solution.forms.append(form)
@ -207,7 +250,8 @@ class LoftService(Base):
if error:
logging.info('Streaming %s error response to s3 bucket - %s',
self.file_name, ApplicationConfigs.s3_processed_bucket)
self.file_name,
ApplicationConfigs.s3_processed_bucket)
solution_file = service_helper.error_to_file(buffer, error)
else:
logging.info('Streaming %s to s3 bucket - %s', self.file_name,
@ -216,5 +260,6 @@ class LoftService(Base):
buffer, self.solver_run.total_form_items, self.solution.forms)
# upload generated file to s3 and return result
return aws_helper.file_stream_upload(solution_file, self.file_name,
ApplicationConfigs.s3_processed_bucket)
return aws_helper.file_stream_upload(
solution_file, self.file_name,
ApplicationConfigs.s3_processed_bucket)