49 lines
1.7 KiB
Python
49 lines
1.7 KiB
Python
from pydantic import BaseModel
|
|
from typing import Dict, List, AnyStr
|
|
|
|
from models.target import Target
|
|
|
|
|
|
class ObjectiveFunction(BaseModel):
|
|
# minimizing tif/tcc target value is only option currently
|
|
# as we add more we can build this out to be more dynamic
|
|
# likely with models representing each objective function type
|
|
tif_targets: List[Target]
|
|
tcc_targets: List[Target]
|
|
target_variance_percentage: int = 10
|
|
objective: AnyStr = "minimize"
|
|
weight: Dict = {'tif': 1, 'tcc': 1}
|
|
|
|
def increment_targets_drift(self,
|
|
limit: float or bool,
|
|
all: bool = False,
|
|
amount: float = 0.1,
|
|
targets: list[Target] = []) -> bool:
|
|
if all:
|
|
for target in self.tif_targets:
|
|
target.drift = round(target.drift + amount, 2)
|
|
for target in self.tcc_targets:
|
|
target.drift = round(target.drift + amount, 2)
|
|
else:
|
|
for target in targets:
|
|
target.drift = round(target.drift + amount, 2)
|
|
return amount
|
|
|
|
def update_targets_drift(self, amount: float = 0.0):
|
|
for target in self.tif_targets:
|
|
target.drift = round(amount, 2)
|
|
for target in self.tcc_targets:
|
|
target.drift = round(amount, 2)
|
|
|
|
def minimum_drift(self) -> float:
|
|
minimum_drift = 0.0
|
|
|
|
for target in self.all_targets():
|
|
if target.drift < minimum_drift:
|
|
minimum_drift = target.drift
|
|
|
|
return minimum_drift
|
|
|
|
def all_targets(self) -> list[Target]:
|
|
return self.tif_targets + self.tcc_targets
|