import os, json, random, io, logging

from pulp import LpProblem, LpVariable, LpMinimize, LpMaximize, LpAffineExpression, LpConstraint, LpStatus, lpSum

from lib.application_configs import ApplicationConfigs
from helpers import aws_helper, tar_helper, csv_helper, service_helper, solver_helper
from lib.errors.item_generation_error import ItemGenerationError

from models.solver_run import SolverRun
from models.solution import Solution
from models.form import Form
from models.item import Item
from models.target import Target

from services.base import Base

class FormGenerationService(Base):

    def process(self):
        try:
            self.solver_run = self.create_solver_run_from_attributes()
            self.solver_run.generate_bundles()
            self.solution = self.generate_solution()
            self.result = self.stream_to_s3_bucket()
        except ItemGenerationError as error:
            self.result = self.stream_to_s3_bucket(error)
        except TypeError as error:
            logging.error(error)
            self.result = self.stream_to_s3_bucket(
                ItemGenerationError(
                    "Provided params causing error in calculation results"))

    def create_solver_run_from_attributes(self) -> SolverRun:
        logging.info('Retrieving attributes from message...')
        # get s3 object
        self.key = aws_helper.get_key_from_message(self.source)
        s3_object = aws_helper.get_object(
            self.key, aws_helper.get_bucket_from_message(self.source))

        # convert to tar
        self.tar = tar_helper.raw_to_tar(s3_object)

        # get attributes file and convert to dict
        attributes = json.loads(
            tar_helper.extract_file_from_tar(
                self.tar, 'solver_run_attributes.json').read())

        # create solver run
        solver_run = SolverRun.parse_obj(attributes)

        # get items file and convert to dict
        items_csv = tar_helper.extract_file_from_tar(self.tar, 'items.csv')
        items_csv_reader = csv_helper.file_stream_reader(items_csv)

        # add items to solver run
        solver_run.items = service_helper.csv_to_item(items_csv_reader,
                                                      solver_run)

        logging.info('Processed Attributes...')

        return solver_run

    def generate_solution(self) -> Solution:
        logging.info('Generating Solution...')

        solution = Solution(response_id=random.randint(100, 5000),
                            forms=[])  # unsolved solution

        # iterate for number of forms that require creation
        for form_count in range(self.solver_run.total_forms):
            form_number = form_count + 1
            current_drift = 0  # FF Tokyo Drift

            # adding an element of randomness to the items and bundles used
            selected_items = self.solver_run.select_items_by_percent(30)
            selected_bundles = self.solver_run.select_bundles_by_percent(
                    30)

            # setup common Solver variables
            items = LpVariable.dicts("Item",
                                     [item.id for item in selected_items],
                                     lowBound=0,
                                     upBound=1,
                                     cat='Binary')
            bundles = LpVariable.dicts("Bundle",
                                       [bundle.id for bundle in selected_bundles],
                                       lowBound=0,
                                       upBound=1,
                                       cat='Binary')

            logging.info(f'Generating Solution for Form {form_number}')

            while current_drift <= Target.max_drift():
                drift_percent = current_drift / 100
                self.solver_run.objective_function.update_targets_drift(
                    drift_percent)

                # create problem
                problem = LpProblem('ata-form-generate', LpMinimize)

                # objective function
                problem += lpSum([
                    bundle.count * bundles[bundle.id]
                    for bundle in selected_bundles
                ] + [
                    items[item.id]
                    for item in selected_items
                ])

                # Form Constraints
                problem += lpSum(
                    [
                        bundle.count * bundles[bundle.id]
                        for bundle in selected_bundles
                    ] + [
                        1 * items[item.id]
                        for item in selected_items
                    ]
                ) == self.solver_run.total_form_items, f'Total bundle form items for form {form_number}'

                # Dynamic constraints.. currently we only support Metadata and Bundles(Cases/Passages)
                problem = solver_helper.build_constraints(
                    self.solver_run, problem, items, bundles, selected_items, selected_bundles)

                # form uniqueness constraints
                # for form in solution.forms:
                #     form_item_options = [
                #         bundles[bundle.id]
                #         for bundle in selected_bundles
                #     ] + [
                #         items[item.id]
                #         for item in selected_items
                #     ]
                #     problem += len(
                #         set(form.solver_variables)
                #         & set(form_item_options)) / float(
                #             len(
                #                 set(form.solver_variables)
                #                 | set(form_item_options))) * 100 >= 10

                logging.info('Creating TIF and TCC Elastic constraints')

                # Behold our very own Elastic constraints!
                for tif_target in self.solver_run.objective_function.tif_targets:
                    problem += lpSum([
                        bundle.tif(self.solver_run.irt_model, tif_target.theta)
                        * bundles[bundle.id]
                        for bundle in selected_bundles
                    ] + [
                        item.iif(self.solver_run, tif_target.theta) *
                        items[item.id]
                        for item in selected_items
                    ]) >= tif_target.minimum(
                    ), f'Min TIF theta({tif_target.theta}) at target {tif_target.value} drift at {current_drift}%'
                    problem += lpSum([
                        bundle.tif(self.solver_run.irt_model, tif_target.theta)
                        * bundles[bundle.id]
                        for bundle in selected_bundles
                    ] + [
                        item.iif(self.solver_run, tif_target.theta) *
                        items[item.id]
                        for item in selected_items
                    ]) <= tif_target.maximum(
                    ), f'Max TIF theta({tif_target.theta}) at target {tif_target.value} drift at {current_drift}%'

                for tcc_target in self.solver_run.objective_function.tcc_targets:
                    problem += lpSum([
                        bundle.trf(self.solver_run.irt_model, tcc_target.theta)
                        * bundles[bundle.id]
                        for bundle in selected_bundles
                    ] + [
                        item.irf(self.solver_run, tcc_target.theta) *
                        items[item.id]
                        for item in selected_items
                    ]) >= tcc_target.minimum(
                    ), f'Min TCC theta({tcc_target.theta}) at target {tcc_target.value} drift at {current_drift}%'
                    problem += lpSum([
                        bundle.trf(self.solver_run.irt_model, tcc_target.theta)
                        * bundles[bundle.id]
                        for bundle in selected_bundles
                    ] + [
                        item.irf(self.solver_run, tcc_target.theta) *
                        items[item.id]
                        for item in selected_items
                    ]) <= tcc_target.maximum(
                    ), f'Max TCC theta({tcc_target.theta}) at target {tcc_target.value} drift at {current_drift}%'

                logging.info(
                    f'Solving for Form {form_number} with a drift of {current_drift}%'
                )
                problem.solve()

                if LpStatus[problem.status] == 'Infeasible':
                    logging.info(
                        f'attempt infeasible for drift of {current_drift}%')

                    if current_drift >= Target.max_drift(
                    ):  # this is the last attempt, so lets finalize the solution
                        if ApplicationConfigs.local_dev_env:
                            service_helper.print_problem_variables(problem)

                        logging.info(
                            f'No feasible solution found for Form {form_number}!'
                        )

                        self.add_form_to_solution(problem, solution)

                        break

                    current_drift += Target.max_drift_increment()
                else:
                    if ApplicationConfigs.local_dev_env:
                        service_helper.print_problem_variables(problem)

                    logging.info(
                        f'Optimal solution found with drift of {current_drift}%!'
                    )

                    self.add_form_to_solution(problem, solution)

                    break

        logging.info('Solution Generated.')

        return solution

    def add_form_to_solution(self, problem: LpProblem, solution: Solution):
        # add return items and create as a form
        form_items, solver_variables = service_helper.solution_items(
            problem.variables(), self.solver_run)
        form = Form.create(form_items, self.solver_run,
                           LpStatus[problem.status], solver_variables)

        solution.forms.append(form)

        logging.info('Form generated and added to solution...')

    def stream_to_s3_bucket(self, error=None):
        self.file_name = f'{service_helper.key_to_uuid(self.key)}.csv'
        solution_file = None
        # setup writer buffer and write processed forms to file
        buffer = io.StringIO()

        if error:
            logging.info('Streaming %s error response to s3 bucket - %s',
                         self.file_name,
                         ApplicationConfigs.s3_processed_bucket)
            solution_file = service_helper.error_to_file(buffer, error)
        else:
            logging.info('Streaming %s to s3 bucket - %s', self.file_name,
                         ApplicationConfigs.s3_processed_bucket)
            solution_file = service_helper.solution_to_file(
                buffer, self.solver_run.total_form_items, self.solution.forms)

        # upload generated file to s3 and return result
        return aws_helper.file_stream_upload(
            solution_file, self.file_name,
            ApplicationConfigs.s3_processed_bucket, 'formGeneration')